
LEAN &
AGILE
AND THE
MATTER OF
ARCHITECTURE

SOFTHOUSE | LEAN MAGAZINE 5

Software Architecture was often ne-
glected in the early years of the agile
movement. However in recent years
most developers have learnt to appreci-
ate its importance. In this article, Jim
Coplien – the author of Wiley’s upcom-
ing book “Lean Software Architecture”
(see page 22) – gives an overview of ar-
chitecture’s role in the Lean and Agile
movements, and tells us about new in-
teresting concepts that are emerging.

The pendulum of change
Mary Poppendieck described in a
2008 talk at Øresund Agile how the

pendulums of practice swing back
and forth over the years. I’ve seen
this in my 40 years in the industry,
and software architecture has always
been one of these pendulums. I can’t
quite find the metaphor that fine-
tunes Mary’s vision to describe how
the pendulum slams from one opin-
ion to the other, and back again. The
metaphor should invoke a vision of
moving deliberately through levels of
learning. Perhaps our entire industry
is Agile at its very foundations, react-
ing eagerly to changes it induces
itself. Instead, perhaps we should >>

Jim Coplien:

✏ By Jim Coplien, Gertrude & Cope

>>

Ph
ot

o:
 C

hr
is

to
ph

er
 R

oo
s

Jim (”Cope”) Coplien
(Gertrud&Cope, Den-
mark), Ph.D., CST, CSM,
CSP, is the father of
Organizational Pat-
terns, is a co-founder
of the Software Pattern
discipline, a pioneer in
practical object-oriented
design, and a widely con-
sulted authority, author,
and trainer in software
design and organizational
development.

Jim Coplien

SOFTHOUSE | LEAN MAGAZINE6

be responding responsibly to the
changes in our environment.

Changing fashions of software
architecture
Software architecture made it into the
software vernacular after a talk be-
tween Jerry Weinberg and Fred Brooks
at IBM where Jerry encouraged Fred
to follow through with his metaphor.
The pendulum had a firm beginning
at center-right. Architecture stayed in
vogue for large projects until the early
1990s when it became unfashionable.
Why? It had started to become over-
done: sometimes a detached exercise
for its own sake, driven out of fear of
uncertainty and change, creeping ever
more strongly to the right. Then, the
pendulum slammed to the left. But ig-
noring architecture also proved prob-
lematic, and now the pendulum is
moving back the other way. Bob Mar-
tin says, ‘One of the more persistent
myths of agile development is that up-
front architecture and design are bad
… Pardon me, but that’s Horse Sh--.’

What is lean software
architecture?
Lean architecture comes from apply-
ing the principles of the Toyota Pro-
duction System to software architec-
ture. “Lean” means to get rid of waste
(like unnecessary documentation),
inconsistency (like mismatched in-
terfaces), and irregularity spaced de-
velopment work in production. Lean
understands that you do deliberate
analysis and planning before going
into production, using techniques like
set-based design that explore every vi-
able alternative. The word “Lean” ap-
plies to both the assembly line and to
the car being built, but also describes
the processes behind them. Lean is
both about the thing and the process,
reminiscent of what good generative
patterns are. Lean architecture is both
about an architecture with no fat, and

about the consistency and reduction
of waste in the process surrounding its
creation and use.

A place for everything
Lean means discipline in maintenance,
too. Yes, the Toyota Way goes beyond
just the Toyota Production System
(TPS) into Total Production Mainte-
nance (TPM). One common aspect of
TPS and TPM is that everything has
its place. In TPS, there is a technique
called poka-yoke or “fool-proofing”
that ensures that pieces are put togeth-
er correctly. It is like the concept of a
design jig in craftsmanship. In soft-
ware, architectural partitioning and in-
terfaces guide feature programmers to
the code for a specific domain, clarify-
ing the code’s place in the context of
the entire system. In TPM, the tool
board has tool outlines for each serv-
ice tool, so each has its place. These or-
ganizations, relationships, and loci are
carefully planned up front.

Forming the shape of the
system
In Lean software architecture, we use
Domain-Driven Design (DDD) to
come up with the system form. The re-
sult of this process is the shape of the sys-
tem. In the same sense that the essence
of a Toyota steering wheel is captured in
the plastic injection mould used to build
it, so the essence of the system is cap-
tured in its architecture. We can tailor
the steering wheel in many ways, just as
we can tailor an abstract base class with
many derived classes suitable to their re-
spective markets.

Lean architecture delivers APIs: usu-
ally abstract base classes, with argu-
ment declarations and other code
annotations that describe the relation-
ships between them. It doesn’t include
details of data structure or method
definition. It is architecture in the true
historic sense of the word as a kind
of pure form that delays structure.

>>
SOFTHOUSE | LEAN MAGAZINE 7

The structure, we deliver just-in-time,
prompted by the need to support a
use case. This just-in-time notion is
another key Lean tenet.

Is a lean architecture agile?
Now back to the other buzzword: Ag-
ile. Should software be both Lean and
Agile? If we look at the words care-
fully, Lean applies to the system form
and how it relates to the domain struc-
ture of the business and of technology.
It is a complicated structure created
by a complicated process. However,
it needn’t be complex. If something is
complicated, I can take it apart and
put it back together again, as an auto
mechanic can do with a car. Complex
things, on the other hand, are more
than the sum of their parts. Software is
both complicated and complex. Most
of software’s complexity comes not
from form, but from the domain of
time and software behavior. Use cases
are what make software complex, part-
ly because of the high rate of change
within the system during a use case,
and partly because a human being is
usually involved. We tend to be com-
plex creatures.

The architect Stewart Brandt notes
that architectures have shear layers:
layers of different rates of change in a
house. The stone foundations or load-
bearing walls may be modified once
a century. Other walls that serve to
partition space may come and go on
the scale of a few decades. Windows
and doors may come and go every
decade or so; the carpeting a bit more
frequently, and the internal décor on
the scale of the seasons. A good soft-
ware system has a Lean architecture
that captures the rather stable com-
plexity of its application and solution
domains, and the complex mapping
between then. On top of that is the
shear layer of features that respond
day-by-day or month-by-month to
customer requests.

Therefore, Lean architecture has
another side, which is its Agile appli-
cation. In the same sense that a Toyota
engineer develops a car so you can
drive it through a complex race course
in dynamic driving conditions, so a
Lean architecture supports Agile adap-
tation of the system to the market.

Individuals and interaction,
and usable code
Agile is about change. But Agile is also
about individuals and interactions,
and about software that works. A soft-
ware system that works integrates
seamlessly with the people who use it.
That means that its structure should
correspond to the mental model of the
end users. End users interact with sys-
tems on the basis of their mental mod-
el of the objects on the other side of
the screen. If the program objects don’t
map those in the end user’s head, con-
fusion results – and that violates the
Agile provision for interactions with
individuals. The programmer is also
an individual, one who wants to sepa-
rate the slow-changing foundations
from DDD from the rapidly chang-
ing Use Cases. But the end user doesn’t
have this dichotomy! How do we re-
solve this?

Agile and Lean require new
kinds of building blocks
The answer lies in the difference be-
tween classes, objects, and roles. Class-
es are units of source code and what
the programmer writes. Objects are
the units of program execution, and
are part of the end-user cognitive
model. Roles are the units of end-us-
er model of action: a user understands
an object in terms of the roles that it
plays rather than in terms of the ob-
ject itself. If we investigate the use case
for a money transfer between accounts
we will encounter roles like Source Ac-
count and Destination Account.
Those aren’t objects – my Salary

DCI (Data-Context-
Interaction) is a so
called Software Pattern
for object oriented
programming which
has been developed by
Trygve Reenskaug in re-
cent years. It advocates
a dynamic behavior of
the software objects
built on its role in each
particular context, and
de-emphasizes the ties
between data and be-
havior which is central
to the currently most
popular pattern MVC
(Model-View-Controller),
developed by Reen-
skaug at Xerox PARC in
the late seventies.

>>

SOFTHOUSE | LEAN MAGAZINE8 SOFTHOUSE | LEAN MAGAZINE8

Account is one of my accounts
and my Savings Account is anoth-

er, and either one may play either of
roles Source Account or Destination
Account. We want programmers to be
able to deal with these separately be-
cause they change at different rates for
different reasons, but we want the ob-
ject that reflects the end-user model to
exhibit all the behaviors of this role it
is playing. In programming terms, that
means being able to glue together the
domain class and the role into a single
class whose objects meet end user ex-
pectations.

The new building blocks:
the DCI Architecture
Trygve Reenskaug’s DCI architecture
(Data, Context, and Interaction) is
a way to organize this role-to-object
mapping while properly balancing the
concerns of the end users with those
of the programmers. DCI starts with
groupings of business functional-
ity called Contexts (the “C” in DCI).
A Context roughly corresponds to a
use case, and a new Context object is
instantiated at the start of each sce-
nario. Contexts get their work done
through Interactions (the “I” in DCI)
between roles. An algorithm is a series
of actions, where each action applies
to some role like a Source Account or

Destination Account. We can code
up complete, generic algorithms in
terms of methods on these roles. At
the beginning of each scenario, the
Context injects its roles into domain
objects that do the work. These
domain objects (the Data – the “D” in
DCI) are the Models of MVC, or the
basic building blocks from DDD.

The Context directly captures the
scenarios of the end user mental mod-
el in terms of the roles by which end
users conceptualize them, supporting
the Agile agenda of customer collabo-
ration. Programmers can reason about
these algorithms directly, rather than
hoping that the right behavior will
emerge as a consequence of the inter-
actions between objects. That supports
the Agile agenda of working code–
and goes further to usable code based
on the end user model rather than on
software engineering formalisms. The
domain objects capture long-term
stable system form that help the pro-
grammer contain change in the long
term, supporting the Agile agenda of
responding to change. De-coupling
the algorithms from the data further
supports responding to change. Fur-
thermore, DCI reaches deep into such
Lean principles as overall consistency,
reduction of documentation, and just-
in-time delivery.

Ph
ot

o:
 c

lip
ar

t.c
om

DCI

