

1. The DCI Paradigm: Taking Object Orientation
Into the Architecture World

James O. Coplien

Gertrud & Cope

Trygve Reenskaug

Professor Emeritus of Informatics, University of Oslo

Abstract: We find surprisingly strong parallels in a playful com-
parison of the progression of thought in the architecture of the built
world and its namesake in software. While some architectural pro-
gression in both fields owes to fashion, much more of it owes to
learning, both in the field of design and in collective human endeav-
our. The authors have been working on a paradigm called DCI
(Data, Context and Interaction) that places the human experiences of
design and use of programs equally at centre stage. It brings soft-
ware design out of the technology-laced modern school of the 1980s
into a post-modern era that places human experience at the centre.
DCI offers a vision of computers and people being mutually alive in
Christopher Alexander's sense of great design. DCI opens up a dia-
logue contrasting metaphors of collective human reasoning and
Kay's vision of object computation, as well as a dialog between the
schools of design in the built world and in software.

1.1 Introduction

Software architecture started as Fred Brooks’ vision of a good metaphor
for how we do software, and particularly for the early work of the pro-
gramming-in-the-large forms of design. Somewhere along the line the
metaphor took on a life of its own and lost many of its original roots. The
metaphor became a place for non-coders to hang their hats, and architec-
ture too often appears in the development process only as the source of
artefacts that are thrown over the wall.

In this chapter we will look at the history of software architecture with a
focus on recent history characterized by object-oriented design. Object-

2 James O. Coplien and Trygve Reenskaug

oriented design broadly characterizes many historic and contemporary
methods that go by many names. All of them share the notion of encapsu-
lation of state and behaviour in a run-time unit with a unique identity, and
all of them separate the client of an object from the object itself by defer-
ring the binding of the name of an object operation until its invocation.
But, more fundamentally, they return to the basics of architecture foreseen
by Vitruvius, as embodying a balance of critical thought and practical ap-
plication [40]:

...[A]rchitects who have aimed at acquiring manual skill without scholarship have never
been able to reach a position of authority to correspond to their pains, while those who re-
lied only upon theories and scholarship were obviously hunting the shadow, not the sub-
stance. But those who have a thorough knowledge of both, like men armed at all points,
have the sooner attained their object and carried authority with them.

Or, as Richard Gabriel notes [25, p. 231]:
… Vitruvius, the classic Roman architect, characterized architecture as the joining of
Commodity, Firmness, and Delight … In software engineering — if there really be such a
thing — we have worked thoroughly on Firmness, some during the last 10 years on
Commodity, and none on Delight. To the world of computer science, there can be no such
thing as Delight because beauty and anything from the arts or the so-called soft part of
human activity has nothing to do with science — it is mere contingency.

Perhaps it’s noteworthy that, with market cap as a measure of success, the
best of the best in contemporary mass consumer computing have the hall-
mark of being driven by customer Delight.

This chapter refocuses the software architecture discussion on its his-
torical roots, in part by invoking the work of architects whose work has
influenced the recent history of software architecture; in particular, Chris-
topher Alexander, and other post-modernists. This is not just for the sake
of nostalgia but also to drive beyond the superficial trappings of contempo-
rary methods to the fundamentals that make us human. Most contemporary
software architecture efforts remain mired in the modern school though
they clumsily strive to apply agile vocabulary and principles. This leads to
frequent breakdown in the metaphor. Architecture is used equally often to
politically co-opt tangential areas such as knowledge management and pro-
ject management, reinterpreted in a modernist framework, or to provide a
vehicle for one organization to exercise political control over another. On
the other hand, the agile position on architecture articulated here not only
borrows directly from the post-modern school but can also be reconciled
with its principles of balanced, practical human focus on life activity over
structure for its own sake.

This chapter places the relatively new DCI (Data, Context and Interac-
tion) paradigm on a firm architectural footing. DCI can be viewed as a
culmination of many design goals over the years. In particular, this chapter

The DCI Paradigm: Taking Object-Orientation into the Architecture World 3

illustrates how DCI addresses the fundamental issues that have arisen
when drawing human users into code design. Such problems have mani-
fested themselves as misfits in the modern-school worldview of object ori-
entation, and we will show how we address them with the DCI paradigm.

1.1.1 Agile apologia

It should, but sadly cannot, go without saying that these perspectives on
design support what today is broadly called “agile” in software. At the
highest level, DCI is a celebration of the human in computing in the sense
that the original goals of OO also put the end user at center stage. A post-
modern perspective is firmly ensconced in “[i]ndividuals and interactions
over processes and tools;” [8] this facet shows through in DCI’s emphasis
of interactive software and human mental models. DCI is a boon to code
intentionality at the system level, which many hold to be the vade mecum
of software architecture, in obvious support of “working software over
comprehensive documentation” [8]. Embracing human mental models and
including architectural to the user interface, developed through the sociali-
zation of domain models and use cases, recalls “customer collaboration
over contract negotiation” [8]. And a careful separation of the dominant
shear layers of software development — domain data and business use
cases — is a high-order evidence of “responding to change over following
a plan” [8].

1.1.2 Architecture and DCI

It’s possible to present DCI as a programming technique that emphasizes
object models and interactions between objects rather than classes. At a
higher level, however, DCI is more properly considered as a paradigm for
system construction that entails fundamentally different mental models
than its predecessors. Just as the architecture of the built world progresses
through paradigm shifts such as the school of the beaux-arts gave way to
art nouveau and art deco in turn, so DCI introduces a new paradigm of
software design at the level of software system architecture.

1.2 The Vision: What is architecture?

Architecture is a longstanding metaphor for software design and construc-
tion, and particularly for programming-in-the-large. Software engineering

4 James O. Coplien and Trygve Reenskaug

has largely embraced this metaphor in many forms, ranging from the use
of the software title architect to the metaphors offered by the pattern disci-
pline.

Architecture is the form of any system created through conscious de-
sign, and it thus has strong human elements both in its process and its pro-
duct. The term form implies a deep mental model of the essence of some
structure. A structure has form; a given form awaits implementation in
structure. For example, an image comes into your mind when I invoke the
word chair. For most people it’s not a wholly concrete image: It may not
even have a colour until the question causes you to assign it one. I might
suggest that I meant to have you think of a five-legged chair and, though
you are likely to have envisioned only four legs, you are likely not to pro-
test that such a structure violates the form of chair.

A software architecture may characterize many different systems with
potentially different features implemented in different programming lan-
guages. We are likely to say that two different consumer-banking systems
have the same architecture even though they offer accounts that differ in
many different parameters. Form is the deep essence of what is common
between these systems, just as Victorian architecture is the essence of
common elements across innumerable houses. Victorian architecture, cli-
ent-server architecture, and Model-View-Controller architecture are about
form. That they drive structure doesn’t mean that they can’t be conceptual-
ized independent of structure. In fact, the presence of structure obfuscates
form with distracting detail and non-essential elements. Architecture drives
to the essence of a system.

The term architecture broadly touches a host of concerns in the built
world, which perhaps best can be summarized in the terms popularized by
the late Roman architect Vitruvius: utilitas, firmitas, and venustas. As cap-
tured by these terms, much of the classic architecture vision speaks to
quality of human life. While architecture’s link to fashion and even to aes-
thetics is controversial [46], commodity and utility (utilitas) are fundamen-
tal; so is beauty. Architecture is not without an engineering component that
encompasses materials and techniques of construction, as good construc-
tion must be durable (firmitas) and arguably timeless [5]. Last, but cer-
tainly not least, architecture should inspire a human sense of delight
(venustas). We can distil “delight” as comfort, beauty, or awe.

Because form is a result of design, and not of analysis, architecture lives
squarely in the space of design. Architecture itself is therefore not princi-
pally about knowledge management, though knowledge management ac-
tivities such as domain analysis and pattern mining often serve as powerful
preludes to architecture. It is exactly this confusion in software, however,

The DCI Paradigm: Taking Object-Orientation into the Architecture World 5

that often distances architecture efforts from the code and breeds scepti-
cism among coders. Nowhere has this split become more pronounced than
in the transition of software to agile software development, which is
largely a movement among designers and coders.

1.2.1 Why do we do architecture?

It might be useful to revisit some of the key goals of architecture. As men-
tioned above, Vitruvius reduces the purpose of architecture to utilitas
(commodity or utility), firmitas (firmness) and venustas (delight). These
goals echo strongly in software, which has adopted them with its own em-
phases. More broadly, architecture is, and always has been about form.
Except among specialists, the English word form is often confounded with
structure, and software folks in particular often incorrectly infer that a sys-
tem’s architecture is the structure of its artefacts.

The proper architectural usage of the term form has historically been
more precise. It’s important to differentiate form from structure: Form is
the essence of structure. We can talk in detail about the form of gothic ca-
thedrals even without having a gothic cathedral at hand. Form is the con-
ceptualization of structure in terms of the relationship between parts, and
between the parts and their environment. Many given structures can im-
plement a given form, just as there are many (different) gothic cathedrals,
all of which implement the forms of gothic cathedrals.

1.2.2 Into software

These fundamental notions of the built world found parallels in the 1960s
world of software construction. The architecture metaphor for software
development, and particularly for programming-in-the-large, originated
with Fred Brooks in the 1960s. Brooks himself was a bit sceptical of his
own brainchild but, after discussions with Jerry Weinberg, became con-
vinced of its metaphoric value for the software world [53].

Software has strongly embraced this metaphor, both for its casual paral-
lels to programming-in-the-large on one hand and for some of its specific
techniques on the other. Software engineering tends to emphasize the for-
mer, with the strongest parallels relating to the concerns around the coarse
or large structure of software and how it relates to the prominent architec-
tural features in the framing out of an edifice in the built world. The pat-
tern discipline [5] is an example of the latter, whose philosophies of local
adaptation and piecemeal growth became an alternative to big-up-front-

6 James O. Coplien and Trygve Reenskaug

design in the 1990s and flourished in the guise of the agile movement in
the ensuing decade.

The architecture metaphor flourishes in software engineering literature
today. The engineering and architectural metaphors arose only a few years
apart. It should come as no surprise that the architectural metaphor stands
out most strongly in the software engineering community, which views
software as an extension of the engineering metaphor. Software engineer-
ing would expand rapidly as a metaphor in the late 1960s, owing to its
popularization by Peter Naur in conjunction with the nascent software en-
gineering community and its first conference in 1968 [37]. As with all
metaphors, this one isn’t perfect, but it tends to be more strongly flawed
than most other metaphors, including that for architecture [19].

Today, the architectural principles of the built world continue to be mir-
rored in its software namesake in varying degrees. One can most often find
the principles of firmitas in software engineering’s exercising of the analo-
gous English language terms stability and, more indirectly, maintaina-
bility. Software engineering’s exploration of utilitas is isolated largely to
the area of requirements management and formalism, touching the final
built product largely through automated requirements translation rather
than any act of design. Venustas in software languishes in the branches
both of software architecture and software engineering, making only an
occasional appearance in the human-computer interaction (HCI) and user
experience (UX) fields, which have their own communities that are again
often distanced from implementation or any human concern. In fact, the
industry definition of software engineering itself is rather devoid of any
human properties such as venustas or even utilitas: “The application of a
systematic, disciplined, quantifiable approach to the development, oper-
ation and maintenance of software” [19].

Architecture thrives in a more humane way in the pattern community,
outside software engineering, where beauty is still valued. However, the
pattern community has paid little heed to utility: it is still largely a com-
munity of architecture for the coders, whose carpenter-like perspective is
often indifferent to and sometimes antagonistic to end-user venustas. There
are noteworthy counterexamples, of course, particularly in the HCI com-
munity (e.g., [51]), which struggles to bear the standard of venustas for the
industry.

The DCI Paradigm: Taking Object-Orientation into the Architecture World 7

1.2.3 Why software architecture?

If building architecture is about utilitas, firmitas, and venustas, what is
software architecture about? Here, the parallel between the architecture of
the built world, and software architecture, works in good measure.

Most software architecture literature emphasizes firmitas in the guise of
maintainability. Software first must work when it is delivered, and then
keep working as requirements change. Even building architects emphasize
the role of good architecture in supporting evolution through changing re-
quirements, as Brandt describes in his classic How Buildings Learn [11].
Good architecture also offers building blocks, vocabulary, and world mod-
els necessary to worthy software.

Some software architecture schools (and the pattern discipline in par-
ticular) emphasize the notion of venustas: of the beauty of software. Most
software literature emphasizes the beauty of the code. We are exhorted to
write clean code [36] or, taking the architectural metaphor more literally,
habitable code [25]. But there is another aspect to venustas that too often
goes unheeded in software, and particularly among the software engineer-
ing crowd: the venustas of the interface. Good interfaces are attractive and
usable. This deep kind of beauty goes beyond what just graphic designers
do but touches deep mental models of the end user.

This perspective on venustas leads us directly into utilitas. Does archi-
tecture relate to usability? In fact, the program structure and the end-user
structure have much to do with each other in an object-oriented system:
that is much of the essence of Kay’s Dynabook vision and of the Model-
View-Controller vision. It’s about matching machines to people in much
the same way that architecture matches a house to its inhabitants. This fact
is lost on most contemporary programmers. The interface is the product:
the code is just the stuff that has to go along to make it work [41, p. 5].

8 James O. Coplien and Trygve Reenskaug

1.2.4 Architecture and the agile agenda

An agile approach is as much a sine qua non of contemporary development
as architecture might have been in the 1980s. After the birth pangs of
Agile dismissed the value of up-front architecture, or at least marginalized
it, the industry is coming around to a more moderate position that accom-
modates a tenuous co-existence between them. DCI is one of the leading
comprehensive approaches that spans this territory, as well as spanning the
range of concerns from domain analysis down to coding concerns, and
everything in between.

In this chapter, as we examine the relationships between Agile, architec-
ture, and DCI, the question certainly arises about what boundaries to draw
around Agile. Agile development as a titled movement is young, dating
back to the Agile Manifesto in 2001. [8] Nonetheless, like all manifestos, it
standardized what at the time was broadly established practice [20]. A look
at history and publications suggests that its popularity can be traced back
to a turning in the industry that started gaining momentum in the early
1990s. The 1990s became the decade of doubt, during which many sacred

Figure 1: The Dynabook. From [32].

The DCI Paradigm: Taking Object-Orientation into the Architecture World 9

cows fell or were at least wounded. Architecture was unfortunately one of
the casualties, but it has newfound legs and is regaining credibility as the
industry discovers that emergence alone doesn’t create good designs in
time frames that the market expects.

The original Agile agenda took an anti-architecture turn in reaction to
the top-down, overly prescriptive architecture techniques of the 1980s.
(Those in turn were a reaction to the perceived lack of software discipline
in the 1960s and 1970s.) Instead of looking to architecture (form) this new
generation would look to processes, in the sense of autopoietic (self-
maintaining) systems. The hope was that architecture would become em-
ergent, thereby skirting the delay and cost of big up-front architecture ef-
forts. The Agile Manifesto [8] attempted to capture this perspective
through its focus on people, communications, pragmatism, market connec-
tion, and flexibility over stipulated processes and technologies. Agile
would echo and amplify the pattern community’s early leanings away from
modernism towards post-modernism.

1.2.5 DCI as an integrative view of the architecture metaphor

One can view DCI is as a way of integrating the positive contributions of
diverse communities such as HCI, software engineering, software architec-
ture, and programming language. DCI respectively strives to embrace the
end user experience, the need for low-cost software comprehension and
extension, while still maintaining stable software artefacts with long ser-
vice lives and providing a practical and elegant expression of its practice in
accessible programming language technology. DCI didn’t come about as
an engineered solution to a wish list of such needs, but as a worldview
rooted in the broad concerns of the relationship between computers and
their users.

What does that worldview look like? It’s about thinking of the computer
as an extension of self that is, as Raskin says, “responsive to human needs
and considerate of human frailty” [41, p. 6] that serves human value. This
means being attentive to the mental models both of end users and of pro-
grammers. End users care most about what the system does while expect-
ing the system to support their mental model. Programmers are also con-
cerned about what the system is. In the same sense that the architecture of
a village, or a resort, or an individual house is an extension of self — an
ecosystem of forms that provide a framework for symbiosis between its
inhabitants — so should the computer be an extension of its human sub-
jects. This comes down to simple concepts like clear interaction meta-
phors, parallelism between programming constructs and the mental con-

10 James O. Coplien and Trygve Reenskaug

structs of the end users, and clearly understandable program code. Most of
these concepts relate to form, and that puts us squarely in the centre of ar-
chitectural dialogue.

1.3 Form and function in architectural history

It’s instructive to locate DCI’s place in the march of programming history,
extrapolating its trajectory from past practices that will be familiar to most
readers here. We find striking similarities to the progression of ideas in the
arts and in architecture of the built world, particularly as regards the age-
old discussion of form versus function, as well as the place of control ver-
sus harmonization, and of technology versus human concern.

The built world and software would jointly consider these questions in
the Design Movement, a loose collection of workshops, essays, and books
in the 1970s and 1980s [22], [49]. Peter Naur of computing fame was
among them, and the building architect Christopher Alexander — whose
name would later become synonymous with patterns — was a major con-
tributor to this body of literature. The debates and innovations of this era
provide an interesting backdrop against which to discuss the DCI para-
digm.

The modernist school of design could be said to dominate most of soft-
ware history, and certainly its foundational years. Software gained its foot-
ing in a 1960s culture that firmly believed in the triumph of technology,
including bold visions of artificial intelligence (that seem to resurge every
few years with much less accompanying progress) and robots to automate
our daily chores. In concert with this shiny, robotic world we find very
little venustas in software. And while the times shaped our vision of soft-
ware, it’s noteworthy that software also shaped the times. Consider this
man-bites-dog 1965 quote from Archer [6]:

The most fundamental challenge to conventional ideas on design, however, has been the
growing advocacy of systematic methods of problem solving, borrowed from computer
techniques and management theory, for the assessment of design problems and the devel-
opment of design solutions.

Software focused on construction, perhaps because it could: notions of
coupling and cohesion, apart from their roots in organizational concerns,
were easy to understand and to reduce to a number. With the echoes of
1960s modernism resonating from a recent past, the programming com-
munity gravitated naturally to these numbers that conveyed a sheen of sci-
ence. It was all about technical goodness. Christopher Alexander would
take note of this trap in the software world as late as the mid-1990s [4]:

The DCI Paradigm: Taking Object-Orientation into the Architecture World 11

Please forgive me; I’m going to be very direct and blunt for a horrible second. It could be
thought that the technical way in which you currently look at programming is almost as if
you were willing to be ‘guns for hire.’ In other words, you are the technicians. You know
how to make the programs work. ‘Tell us what to do, Daddy, and we’ll do it.’

 This worldview is so strong in software that it is taken for granted. It’s
important at some point to emphasize that the software world adopted the
architectural metaphor selectively, and this would be a good time to raise
this issue. Of deeper importance here is that much of its use of metaphors
is uninformed. A good example is the cacophony of attempts to automate
pattern detection in programs, with a concomitant flurry of publications.
None of them cite Alexander’s own earlier forays into this territory, their
failure, and the fundamentals beneath the failure. [17]

Another longstanding foible of the software community lies in the con-
fusion of form with structure. Early architects turned to platforms and
modules first, and protocols and interfaces only second, in their realization
of the architectural vision. Architecture has always been closely coupled to
the idea of reuse, and reuse almost always played out at the level of masses
of software. Though the underlying economic motivations of this position
were lost on few, there seemed to be few alternatives. Libraries and plat-
forms flourished. This approach would be tempered somewhat with the
rise of frameworks — partially filled-out architectures — only in the
1990s, some thirty years after the rise of the architectural metaphor in
software.

Form suffered more subtle slights at the hands of software practice.
Form, in architecture, starts either in the eye of the beholder or, as Alexan-
der would have it, in deep processes that transcend even human existence.
This notion dominates the conscience of the architectural profession in its
use of the term. Software more commonly adapts a more vulgar use of the
term rooted in engineering and technique. In the world of class-oriented
programming, snippets of system behaviour don’t exist outside the form of
classes. Even in prototype-based approaches (such as that espoused by self
[52]) behaviour follows structure (of instances) rather than form. Venustas
suffers directly, and utilitas in a less direct way.

1.3.1 Historic movements and ideologies

There are strong parallels between l’École des beaux-arts and the primor-
dial hacker culture of programming in 1960s-era MIT. The metaphor con-
tinues on the side of the built world into the mass-produced art of the Great
Exhibition in the Crystal Palace in London in 1851, and the Arts & Crafts
movement; in the advent of Software Engineering at the Garmisch confer-

12 James O. Coplien and Trygve Reenskaug

ence in 1968 and the rapid rise of reuse and structured design; and in the
Arts and Crafts movement in England in 1861 and the rise of “anthropo-
morphic” techniques of object orientation in the 1980s. Objects were, in
many ways, the art nouveau of the programming world.

Even as architecture would evolve through art nouveau and art deco into
the modernism of the 20th century, so object orientation would become a
diminishingly human-centric concept in an increasingly technology-based
community. The same kind of linguistic focus one finds in James Joyce’s
literature could be found in the language wars of 1980s computer science.
The technological focus of modernism maps to the case tool craze of the
1980s. And the increasing focus on twentieth-century objectivism found a
natural home in 1980s programming notion of objects: manifestations of
concrete, real-world things.

Software architecture took a strange turn in the 1990s as the object-
oriented programming community discovered patterns. The concept of
patterns was refined in the built world by architect Christopher Alexander,
a post-modernist who detests card-carrying post-modernists. In Alexan-
der’s definition, patterns are incrementally built elements of form neces-
sary to the wholeness of, or a kind of quality that defies delineation of,
some built whole. Each one transforms the whole from a less whole state
to a more whole state. These patterns link together in a grammar that con-
textualizes each one and that imposes constraints on their ordering of ap-
plication.

Software practitioners adopted the pattern metaphor to describe what
they knew were essential forms of custom construction in specific do-
mains. Because they are customized to a domain or particular problem,
they aren’t the general fodder of academic literature. The pattern com-
munity in fact consciously distanced itself from academic sponsorship and
discarded academic mores of originality in favour of broad practices of
communities in the wild. [18]

These foundations of patterns constituted a left turn because, first, they
were more of a conscious departure from the status quo than a complemen-
tary framework to it. Good patterns didn’t describe how to do object-
oriented programming — that is, they did not take ordinary object-oriented
staples such as encapsulation, polymorphism and inheritance as their
building blocks. Rather, they tended to describe how to create code when
pure object ideals or directly applied language constructs failed. Patterns
became a way to describe how to survive software development when sad-
dled with the dire constraints of object orientation, and they gave legiti-
macy to constructs that consciously violated sacred principles such as
identity (most GOF patterns [26] break it), cohesion (most GOF patterns

The DCI Paradigm: Taking Object-Orientation into the Architecture World 13

achieve their goal by distributing computation into additionally created
objects), sub-typing through inheritance (patterns such as Façade allow
simulation of inheritance with cancellation), and so forth.

Beyond this technical redirection we find even deeper ideals. Patterns
grew up outside the community of software architecture and largely out-
side the field of software engineering; you find pattern literature in those
fields only late in the maturity of the community. Rather than adhering to
the largely technical agenda of those communities, patterns were explicitly
about people. Patterns clearly blossomed in part because the early days of
object orientation had laid the foundation for a human agenda of pro-
gramming through approaches such as anthropomorphic design, and
through the link that MVC created between objects and the human clients
of computation. Elaboration of any true human agenda within object orien-
tation itself was largely muted in the 1980s by the louder voices of pro-
gramming language (modernism and James Joyce again) and automation
(CASE tools).

1.3.2 Enter post-modernism

Computing today is enmeshed in a long-running slog of transition into
post-modernism: the triumph of ideas over objects [49, p. 8]. These same
terms that are used in the arts apply equally as well to software, and will
figure in our dissection of DCI. In software, the pattern discipline of the
1990s published the first tomes of progress in this area. Like its counter-
part in the built world and in movements such as art deco, the postmodern
software world is focused on software for the masses, on compositional
strategies over individual parts, and a focus on change rather than static
beauty: “…to live in a perpetual present and in a perpetual change that
obliterates tradition.” [29] We find these notions in the rise of intentional
programming, generative programming, multi-paradigm design, and as-
pect-oriented programming.

1.3.3 Architecture finds an object foothold

As generations of programmers are born into settings that are increasingly
removed from Fred Brooks’ environs, year after year, so the mores of the
software engineer’s version of architecture diverge increasingly from the
roots of architecture of the built world.

Grady Booch arguably stood as the original doyen of object-oriented
software architecture. It was largely through his extensive work and lead-

14 James O. Coplien and Trygve Reenskaug

ership that the object community came to embrace the architectural meta-
phor. Booch will best be remembered for his contribution to system mod-
elling and to his cloud-icon notation, affectionately referred to as “Booch
diagrams.” Along with Jacobsson’s use case contributions [28], it would
later modulate the largely OMT-based semantics of UML.

Most practitioners from the last two decades of the last century will re-
member class diagrams as the primary useful component of UML, cer-
tainly as regards architecture. Jacobsson’s use cases, in the mean time,
were relegated an important position alongside of, but not central to, archi-
tectural concerns. Architecture became synonymous with structure; behav-
iour was something else. Architecture and class diagrams were for archi-
tects; use cases and message sequence charts were for analysts. And it was
the job of the programmers — software’s ersatz carpenters — to reconcile
these two perspectives. There were, of course, noteworthy exceptions.
UML 2.0 would compensate for UML 1.0’s paucity in this area, but did so
at the expense of visual verbosity. SOA defined services, but at a level that
was usually far removed from the code; it is probably a better metaphor for
urban planning than for the architecture of a house.

Thus the object community stumbled into a dichotomy between form
and function. Computer practitioners were perhaps predisposed to such a
dichotomy anyhow: the previous generations had seen a split of records
versus functions; I-space versus D-space; database versus process; entity-
relationship versus data flow.

The architects of the built world were no stranger to this dichotomy of
form and function, either. Design has often been a question of utilitas ver-
sus form.

1.3.4 Software engineering and architecture today

The same term in software more often relates to engineering practices than
to the broader concerns of architecture. While architecture of the built
world is indeed concerned about both the form of the whole (and, to a de-
gree, of its parts) and about the engineering concerns of construction,
software engineering tends to emphasize the structural, methodical and
mechanical concerns. The software architectural landscape is littered with
formalisms that speak more to construction than aesthetics. Even when
invoking the pattern metaphor, most software patterns are more about en-
gineering concerns than about any explicit nod to firmitas, utilitas, or
venustas. Alexander’s original notion of generativity (indirect emergence
of form) became confused with a notion of cleverness or obscurity, and

The DCI Paradigm: Taking Object-Orientation into the Architecture World 15

patterns took more of a form of “aha” puzzles and their solutions than with
human comfort or quality of life.

1.3.5 Measures of the vision

Software adopted architecture with the hope (justifiable perhaps only
through revisionist thinking) that it would help teams create software
structures that could be reasoned about in respective isolation. These units
were informally called modules, and their degree of independence, modu-
larity. Constantine proposed measures of good modularity based on the
internal connectivity of a module (cohesion) and lack of connectivity be-
tween modules (de-coupling). Conway proposed that good modularity
leads to team autonomy [16], and given that small, autonomous teams
were more productive than monolithic groups, architecture would aid pro-
ductivity.

More informally, architecture was seen as a discipline for the good of
discipline. There is a tendency to believe that good architecture leads to
systems that perform better and are more secure, but such claims relate less
to any given architectural principle than to the timing of big-picture delib-
erations in the design cycle and to the proper engagement of suitable
stakeholders. Architecture was an artefact that encouraged a front-loading
of key activities that become awkward if pushed until too late

In fact, the object paradigm was unwittingly created with noble architec-
tural ends: support the creation of built artefacts that could adapt to and
better support the quality of human life. Little of this rationale appears to
owe to the architectural metaphor or any roots in design theory, but the
two roads would cross many times after meandering independently for
many years.

1.4 What is object orientation? Achieving the vision

Computers were invented largely as mental aids. In inventing object-
orientation, Alan Kay envisioned objects as a recursion on the concept of a
computer. His metaphor of objects was that of a large network of interact-
ing objects, each one of which was designed in-the-small to perform its
own task well. From the perspective of the system architect one can view
such objects as bricks whose individual contributions to architectural se-
mantics are low. Elements of human value would appear at larger scales as
emergent properties arising from the interaction of these large numbers of
individual objects with integrity.

16 James O. Coplien and Trygve Reenskaug

1.4.1 The Kay model

As inferred above, Kay’s vision can be interpreted from an architectural
perspective, or system level, as a metaphor for self-maintaining eco-
systems. A system’s structure is a consequence of its local adaptations
over time. The human’s place in this system is as the translator of real
world nuggets into the language of the computer, at the level of its organs
or, perhaps more instructively, of its cells. In the purest form of this sys-
tem, the end user was removed from the burden of overall system design.
Starting with a platform like Smalltalk, an end user could ideally express a
few increments of interest where the computer could augment the end
user’s needs, and could make the system do their bidding by the incre-
mental addition of a few objects.

It’s crucial to note that the Kay model is highly distributed: It is in es-
sence a network paradigm of computation. The overlap of this model with
parallelism and concurrency is complex and difficult to delineate, and the
industry is not yet at a point of integrating these perspectives though there
have been numerous research attempts to do so.

We can say that the Kay model expects order to arise as an emergent re-
sult from the construction and interaction of individual objects of integrity.
This early aspect of object-oriented programming, amplified by the pattern
discipline’s love affair with emergence, can certainly be identified as one
of the roots of the agile ideology.

In what too easily can be considered a side note, Kay was acutely aware
of the fundamental dynamic aspects of human mental models. Returning to
the original Dynabook paper [32], we find:

Two of Piaget’s fundamental notions are attractive from a computer scientist’s point of
view.

The first is that knowledge, particularly in the young child, is retained as a series of oper-
ational models, each of which is somewhat ad hoc and need not be logically consistent
with the others. (They are essentially algorithms and strategies rather than logical axioms,
predicates and theorems.)

1.4.2 Mental system models

Doug Englebart had earlier developed even deeper foundations for what
later was to become object-oriented programming. Rather than thinking of
the computer as an externalized tool or component, his vision incorporated
the computer as an extension of human capabilities. Englebart speaks of
augmenting the human intellect (though his work doesn’t focus on the in-
ternal structuring of programs).

The DCI Paradigm: Taking Object-Orientation into the Architecture World 17

Behind Englebart’s vision stand human mental models and a hope to ex-
tend those models into the computer. It became an early goal of object-
oriented programming to capture those models. Kay writes [32]:

We feel that a child is a "verb" rather than a "noun", an actor rather than an object; he is
not a scaled-up pigeon or rat; he is trying to acquire a model of his surrounding environ-
ment in order to deal with it; his theories are "practical" notions of how to get from idea A
to idea B rather than "consistent" branches of formal logic, etc. We would like to hook
into his current modes of thought in order to influence him rather than just trying to re-
place his model with one of our own.

More prominently, MVC and Kay’s brainchild Smalltalk would use ob-
jects to capture these mental models in the running program, in the “mind”
of the machine.

1.4.3 Model-View-Controller

MVC embraced Englebart’s vision of computers as an extension of the
human mind, and translated that vision into an object-oriented world in
which an interactive human interface played a central role. This interactiv-
ity was central to Englebart’s notion of mental augmentation.

The central architectural paradigm, then, was to maintain synchroniza-
tion between the end-user worldview and its representation as computer
data. As with most design paradigms, the major organizing principle was
partitioning. MVC’s main partitioning structure is its views, each one of
which corresponds to some tool by which the end user interacts with the
computer. At a lower level, each tool comprised a dynamically assembled
network of objects. Thus, the architecture had a large dynamic component
of changing object connections and changing views. For any given view,
there was a relatively stable configuration of objects that could be charac-
terized by the same pattern: the relationships between its models, the view
itself, and the controller. The models are the computer representation of
the end user mental model of some object, and in fact are what program-
mers usually think of in association with the term object. The view arran-
ges the presentation of those objects to the end user, usually in a visual
form. The controller is responsible for creating and coordinating views
and, together with the views, handles operations such as selection.

It is important to understand that MVC was not conceived as a library-
on-the-side to add interactivity to a working program, but rather as the
nervous system of the silicon part of the human-computer system. More
broadly, MVC as an architectural paradigm includes the end user as well,
and we now use the name MVC-U — where U stands for the end user —
to emphasize this aspect of its design.

18 James O. Coplien and Trygve Reenskaug

1.4.4 Patterns

The software pattern discipline took major departures from the Alexan-
drian vision of architecture, and these departures are no more apparent
anywhere than in object-oriented practice. The Design Patterns book [26]
was selective in its application of Alexandrian ideals. On one hand the
GOF recognized that software has cross cutting constructs that aren’t visi-
ble in the code, but are nonetheless part of the design vision of the pro-
grammer. This notion of scaling beyond individual objects to relationships
takes us firmly into the realm of architecture.

Patterns were arguably one of the strongest foundations of the agile ag-
enda. The ideas of piecemeal growth and local adaptation that are funda-
mental to pattern-based developments would be taken up almost verbatim
by the pattern community. Agilists would embrace Alexander’s valuation
of human concerns over method less than a decade later.

1.4.5 Use cases

Human users usually approach a system with a concrete use case in mind.
When you go up to an ATM machine, you bring your withdraw-money
script or transfer-money script with you in your head. You have to learn it
from scratch only the first time; the MVC approach helps your right brain
train your left brain as you gain repeated experience with the script, or Use
Case. The use case eventually becomes part of your left-brain mental
model: this is long-term learning. This model has strong links to the right
brain and its conceptualization of the “things” of the user world.

These use cases are only complicated (short of being complex or cha-
otic) in the Snowden taxonomy [47], which suggests that the emergence-
based model of object system behaviour is overkill while paradoxically
being impoverished in intentionality. Class-oriented code is hard to write
and harder to maintain. The programmer cannot reason about how the end-
user conceptualizes system functionality, which ends in a modelling stale-
mate between the end user and the programmer [34]. An example of a con-
sequence of this mismatch is the frustration one experiences with a popular
word processor when trying to insert a graphic in the middle of a para-
graph: the mental models for the programmer and end user are clearly dif-
ferent.

Contrary to the Kay paradigm, the use case paradigm is a centralized
view of computation. Use cases aren’t really part of the “object canon.”
(Jacobsson’s use cases indeed have an object model, but it is a meta-model

The DCI Paradigm: Taking Object-Orientation into the Architecture World 19

that structures related scenarios rather than the mental models within scen-
arios.)

UML (the Unified Modelling Language) was an attempt to bring use
cases together with the more data-centric facilities of the Booch method
[10], drawing largely on Rumbaugh’s OMT notation. The result is neither
a paradigm nor a computational model, but a language for communicating
such models or paradigms.

Use cases have a reputation of being anti-agile because they were
widely abused in the 1980s. However, they are curiously suitable to incre-
mentally structuring requirements in agile, and overcome many of the risks
of the more popular concept of user story [15].

1.4.6 Many views of objects and the boundaries of MVC

The Model-View-Controller (MVC) vision in many ways tried to reconcile
the network paradigm of Kay with the use case paradigm. It embraced the
communication paradigm that one can extrapolate from Kay’s vision: that
is, that at its foundation, a system is a collection of many cooperating ob-
jects. On the other hand, MVC focused on the link between the objects and
human mental models in concert with Englebart‘s vision of computers
(and objects by extension) as human mental adjuncts. The vision goes back
to Thing-Model-View-Controller in 1978 [44], which evolved into MVC.
By drawing the human being into the world of interacting objects, MVC
investigates the nature of interactions between objects — interactions that
have their roots in the end-user mental model.

While Kay expressed his vision in terms of networks of communicating
objects, he relegated the intelligence of design — of programming — to
the level of the individual objects themselves, trusting the structure of their
interworking to self-organization. This perspective is much in line with
Alexander’s vision of emergent structure. This perspective tacitly sup-
ported the idea that objects could be designed from the inside looking out
instead of precipitating from a wider perspective of their place in system
behaviour. Unfortunately, this viewpoint became institutionalized in the
class: a way of designing individual objects from their identity as individu-
als rather than their roles in contextualized system operations.

MVC has only scratched the surface of Kay’s communication paradigm.
MVC captured the way that people view of the “things” in the computer’s
representation of their world. In the programmer’s world, this is the pro-
gram-in-the-large or, grossly, the form of the system data. The part of
MVC that helps people understand the whole of the data forms necessary
to a given set of related tasks speaks largely to the right brain. The brain

20 James O. Coplien and Trygve Reenskaug

takes in the screen information as a whole without specifically analyzing
each part or its functionality. At any given time we have a static worldview
and a static architecture, poised to transition into a successor static world-
view after some event (usually from the user) drove the computer through
useful business processing. This processing was opaquely relegated to the
Model part of MVC, and it was easy to map MVC models onto Kay’s au-
tonomous objects.

Once the user has established this connection with the computer —
which typically takes 10 seconds [14] — the end user now sets about
achieving a business goal. That goal often entails multiple interactions be-
tween the user and the system following a script in the user’s mind. This
script is a gestalt, though it can be chunked along the boundaries between
the end users’ classifications of the “things” in their world according to
use. When in this operational mode we conceive of real-world things ac-
cording to their use in the moment; in a rain shower, a newspaper becomes
a hat; for a motorcyclist, a garbage bag becomes rain gear. The right brain
is dominant in carrying out these interactions towards the business goal: a
focused, analytical use of the program-in-the-small.

This worldview isn’t so easy to map into Kay’s model because the end
user details of object behaviour do cut across objects but yet are stable in
the long term. There was nothing in object architecture that provided a rea-
sonable home for a (static) architectural representation of these dynamics.
By contrast the procedural world of FORTRAN, Pascal and C gave a home
to these models at the expense of the right brain.

MVC didn’t attack this right-brained aspect of user mental models.
Other tool metaphors arose for these activities, most of them falling out-
side the architectural metaphor, and few of them led to concrete engineer-
ing practices. One powerful metaphor that combined both these worlds
was Laurel’s vision of the human-computer interaction through the meta-
phor of theatre, where the objects in a system become reminiscent of actors
in a play and the user becomes a member of the audience [34]. But the
most popularized model of the interactions between people and computers
came in Ivar Jacobsson’s use cases [28].

Sadly, both the FORTRAN/Pascal model and the use case model
viewed what-the-system-is and what-the-system-does as separate concerns.
That naturally led to the creation of separate artefacts in design and pro-
gramming. Multi-paradigm design [21] advised us to use procedures for
algorithmic-shaped constructs and classes for the more static elements of
design; this led to terrible patterns of coupling between the two worlds.

The idealistic Kay vision suggests that individual small methods on
small objects would naturally interact to do the right thing. A good meta-

The DCI Paradigm: Taking Object-Orientation into the Architecture World 21

phor is to compare these objects with people in a room who are asked to
divide themselves into four groups of approximately equal size. It seems to
work even without any central control. Snowden characterizes such sys-
tems as complex systems [46]. In summary, the original object vision
didn’t go far enough to capture the essence of the real world it was meant
to model.

1.5 Shortcomings of the models

Software’s dance with architecture was initially exploratory and playful,
but the years have hardened it either into law or habit. Many of the para-
digms of the early years became institutionalized in programming lan-
guages, methodologies, and standards. In retrospect, experimentation with
the metaphor stopped too early, and today it’s difficult to gain acceptance
for any notion of “architecture” that lies outside the hardened standards.
Many of my previous attempts to describe DCI on an architectural level
have fallen on deaf ears because the self-titled architects can’t recognize it
as falling within their sphere of influence or exercise of power, and so they
too easily dismiss it.

Architects speak of shear layers in built artefacts. Different parts of a
house evolve more rapidly than others: a house needs a new roof every few
years but rarely needs a new exterior wall. Good architecture provides
good interfaces that separate the shear layers of its implementation: a ne-
cessity for evolution and maintenance. Class-oriented programming puts
both data evolution and method evolution in the same shear layer: the
class. Data tends to remain fairly stable over time while methods change
regularly to support new services and system operations. The tension in
these rates of change stresses the design.

DCI is an attempt to overcome these elements of structural inertia by re-
turning to first principles and the deep elements of object foundations. Its
premises seem to be born out in early experimentation and application.
The rest of this paper will focus on the dialog between the pre-DCI world
and status quo to help readers hone their understanding of the state of the
art in object-oriented programming.

1.5.1 The network paradigm

Kay’s original formulation missed the what-the-system-does component of
design. It worked fine for simple programs where each unit of business
functionality can be encapsulated in an object, but it left no place to reason

22 James O. Coplien and Trygve Reenskaug

about system behaviour across objects. Further, Kay and Ingalls rolled out
this vision in a language called Smalltalk, which was widely adopted as a
way to implement designs based on class thinking and class models rather
than object models.

The class model places the programmer inside of the object, cognisant
of its internal workings and constructions, but insulated from the interac-
tions between its own objects and other objects in the system. This is a
strange man-bites-dog reversal of the normal sense of encapsulation. The
same class boundary that protects the internals of a design from concerns
outside the interface, so that the programmer can reason about them lo-
cally, also insulates the programmer from the crucial design concern with
interactions between objects. Each class ignores other classes’ design con-
cerns — and since there is nothing but classes in a class-oriented language,
there is no locus of understanding relationships between classes.

Programming languages institutionalized this paradigm through encap-
sulation techniques. Programming environments provide little aid for rea-
soning about any structure beyond the class. One can argue that good envi-
ronments express inheritance relationships between classes; however, in-
heritance is only a syntactic convenience that leaves the computational
model untouched. Further, it is a temporary compile-time artefact that lies
between human mental models in analysis and object instances at run time.
It doesn’t change the semantics of any object-oriented program if we flat-
ten all base classes into a single derived class composition.

Design methods also institutionalized this worldview. One of the best
known is responsibility-driven design, popularized through CRC (Classes,
Responsibilities, and Collaborators) cards. While responsibility-driven de-
sign has the strong advantage of starting with scenarios or other use cases,
the resulting artefacts ossify the behaviour elements into static relation-
ships between classes, as the name “CRC” exhibits. In fact, end users don’t
conceptualize system behaviour in terms of classes (which are total classi-
fications of form) but instead in terms of roles (which are partial classifica-
tions of form). Experience proved this to be a problematic approach. Re-
becca Wirfs-Brock has since wanted to rename them to “RRC Cards”
(Roles, Responsibilities, and Collaborators). She has instead kept the ori-
ginal acronym but has replaced “Class” with “Candidate” — like a role
[54].

Good code conveys designer intent; great code captures end user intent.
The ability of code to express intent is called intentionality. The embed-
ding of the network paradigm, the class paradigm, and other early architec-
tural metaphors for objects has caused intentionality of system behaviour

The DCI Paradigm: Taking Object-Orientation into the Architecture World 23

to dissolve. DCI restores this intentionality to architecture by explicitly
capturing use cases in a contextualized form.

1.5.2 MVC

Model-View-Controller missed the what-the-system-does component of
design. It worked well for simple designs. MVC is better as a virtual ma-
chine than as the architecture built on top of it. It encouraged the atomic
interaction style of human/computer interaction innate in the Kay world-
view: a paradigm that viewed each object as being able to handle the user
request atomically without much consideration for sequences of tasks be-
tween objects and the end user. MVC has been institutionalized with vary-
ing degrees of fidelity into many environments, such as Apple’s Cocoa
framework.

MVC’s interests are largely orthogonal to DCI; the two are complemen-
tary. Historically, MVC emphasized data over interaction. While most
programmers followed this paradigm and took it not only as the primary
metaphor but the exclusive metaphor for their system design, it is not ex-
clusive of the use case focus afforded by DCI.

1.5.3 Patterns

Though the GOF patterns claim Alexander’s vision as their heritage, they
are so remote from Alexander’s vision of architecture as to be barely re-
cognizable as patterns. Alexander’s bore a clear tie to the patterns of
events that they supported; there is little of this in the GOF patterns. Alex-
ander’s patterns were rooted squarely in the business domain and solved
end-user problems; GOF patterns have no mapping to or from the users of
the system. Alexander’s patterns were fractal in scale; the GOF patterns
live largely in the programming-in-the-small world.

Last, while most GOF patterns live in a class world rather than an object
world, they hardly represent any uniform paradigm grounded either in ob-
jects or in classes. The overview of FAÇADE invokes the word object only
once; class appears seven times [26, p. 185]. ITERATOR, however, men-
tions class 6 times and object 9 times [26, pp. 257-258].

Because of their Alexandrian heritage many OO practitioners came to
believe that GOF patterns provided software architecture foundations.
Software architecture practice embraced patterns, and that usually meant
GOF patterns. This perspective reinforces the Kay programming-in-the-
small model to this day.

24 James O. Coplien and Trygve Reenskaug

1.5.4 Use cases

In the end a program offers a service. Object-oriented design has poor in-
tentionality for a use case world model. Most object systems express and
organize concepts closer to the program data model than to its process or
behaviour model. The data part of software architecture is certainly a cru-
cial perspective, but it’s only half the story. What’s worse is that the data
view fails to express most of the client value of a software product. We sell
use cases, not classes, and not even objects: end users don’t usually con-
ceptualize system behaviour in terms of classes.

From an architectural perspective, this leads the designer — who works
at the source code level — out of touch with the dynamics of the whole.
The hope held by the network model is that emergence will win out.

From a broader perspective, it’s noteworthy that OO became the tech-
nology of choice for reusable libraries of containers, user interface compo-
nents, and other APIs where the programmer can reason within a single
class about the consequences of a business operation. While objects took
off in these infrastructure areas they rarely thrived in applications with
complex workflows.

DCI embraces the power of the emergence as in Alexandrian patterns
but adds a focus on the intent of the design. A collection of well-
constructed objects will no more generate meaningful system behaviour on
their own than a collection of building materials will generate a structure
suitable for human activity (Figure 2). As such, DCI can be seen as a para-
digm that builds on Kay’s original vision of socially responsible objects
working together to generate collective system behaviour, but which ex-
tends that model to explicitly articulate intended behaviour. This inclusion
of intent leads us into the arena of system behaviour, its form, and the arti-
culation of this form.

One might ask: whose intent? The literature of contemporary software
architecture is littered with allusions to the architect’s intent. DCI holds the
end user volition over that of the architect. This is more in line with the
agile agendas of “individuals and interactions over processes and tools,” as
well as the agendas of customer collaboration, working software, and
changes in the customer space. [8]

1.5.5 The object canon

Some object fundamentals are basic enough to transcend the schools of
object orientation: encapsulation, polymorphism and friends. Each of these
design techniques brings its own problems: information hiding is good, but

The DCI Paradigm: Taking Object-Orientation into the Architecture World 25

hidden things are hard to find; polymorphism is a form of hyper-galactic
GOTO. DCI strives to address many of these problems.

1.5.5.1 Object-oriented programming isn’t about classes

Few programmers program objects or design objects. The class is most
often the unit of design. This is absurd from an architectural perspective.
Architecture traditionally has been about creating the artifice delivered to
the end user. Carpenters use scaffolding and tools to achieve the architect’s
vision, and a great architect will be in there with the carpenters swinging a
hammer. Most contemporary architecture thinking, however, seems to
leave behind any thoughtful relationship between form and function but
focuses instead on the tools. This may well be because great architectural
talent arises from domain knowledge, and it’s difficult to treat architecture
as a generic discipline within the (generic) discipline of programming. In
the end, architecture has arisen as a generic discipline of tools rather than
the result of a quest for beauty and utility.

The preponderance of class thinking in software engineering likely
arose from two sources: programming language technology, and interac-
tive computing. Programming languages introduced types as a conven-
ience that helped the compiler generate efficient code, and types were later
adopted as a way to communicate a module’s intent to its user. Class rela-
tionships such as sub-typing, commonly implemented using inheritance,

Figure 2: Design emergence

26 James O. Coplien and Trygve Reenskaug

provided an attractive mechanism to link programmer modeling to the
compiler type system. This led to programming-by-increment using sub-
classing, as well as arguments for code reuse based on inheritance, that
caught the imagination of software engineering. This was use case heaven.

Interactive computing inverted the traditional batch computational
model. There is no human presence in a batch program, so the sequencing
of function executions depends only on the data. Latency was not a core
concern. Design becomes an issue of sequencing function invocations. In
an interactive program, the human presence injects events into the program
that result in unpredictable sequences of function invocations, and a quick
response is imperative. Function sequencing is unpredictable, and the data
model dominates. Classes were viewed largely as “smart data and became
the loci of design, with most of the functionality subordinate to the data
model. Early object orientation thrived on the noun-verb model of compu-
tation, where the “verb” component was usually a simple, atomic operation
that could be localized to a class. Use cases were too easily forgotten in
deference to the computational model arising from point-and-click.

1.5.5.2 Class thinking isn’t limited to class systems

The problem of single-object-think is aggravated by class orientation but is
not unique to class-oriented thinkers. Most object methods are curiously
reminiscent of a Kantian object world where individual objects act alone
and programmers live inside of objects looking out: there is rarely any
sense of collective behaviour in object-oriented systems, and there is rarely
any degree of behavioural (self-)organisation. We are told that objects are
smart data, but a closer inspection of both data and system behaviour
shows something profoundly amiss with that characterization.

1.5.5.3 Lack of locality of intentionality

Adele Goldberg used to say, “In object-oriented programming, it always
happens Somewhere Else.” Part of this owes to the innate thesis of object
orientation itself: that intelligence is collective rather than localized. This
shows up in three ways: polymorphism, deep object hierarchies, and deep
class hierarchies.

Most object-oriented thinkers will link Adele’s quote to polymorphism,
which is a kind of hyper-galactic shift in execution context that occurs
with each method invocation. Polymorphism hampers our ability to under-
stand code statically: we can follow the sequencing of method invocations
only at run time. It’s perhaps no accident that there has been an increased

The DCI Paradigm: Taking Object-Orientation into the Architecture World 27

focus on testing and techniques like test-driven development with the ad-
vent of object-oriented programming: If you can’t analyze, test.

Second, object hierarchies tend to be deep. More precisely, objects usu-
ally lack a hierarchical structure but possess more of the structure of the
network paradigm of computation. To an architect who bases a system on
units that interact via inter-process communication, object orientation has
the feeling of message passing and of asynchrony. Objects in fact em-
braced the message metaphor explicitly; that it might infer asynchrony or
parallelism is perhaps unfortunate. That detail not withstanding, object
orientation still has the feel of a pass-the-ball style of computation. This is
a serious obstacle to program comprehension and intentionality because
the program counter passes many abstraction layers on its way to accom-
plishing its goal.

Object orientation is designed so we are not supposed to know where
the program counter will end up on a method call: object encapsulation
and method selection insulate us from that coupling. We gain syntactic
decoupling; we lose system-level comprehension. The supposed semantic
decoupling of objects participating in a use case is largely an illusion, be-
cause in the end, each method executes in the business context both of the
preceding and ensuing execution. It is difficult to reason soberly about a
method in isolation, with respect to business goals.

Third (and closely related to the second) is that class hierarchies are also
deep. Let’s borrow an example from our good friends in academia who
seem wont to employ zoo animals and shapes in their pedagogical exam-
ples. Here is the roundRectPrototype method of Rectangle, from
Squeak:

roundRectPrototype
 ^ self authoringPrototype useRoundedCorners
 color: ((Color
 r: 1.0
 g: 0.3
 b: 0.6)
 alpha: 0.5);
 borderWidth: 1;
 setNameTo: 'RoundRect'

How many classes do you need to understand to fully understand this
code? Most programmers will answer that we need just to understand
Rectangle. In fact, objects of the Rectangle class include 7 other Rec-
tangle methods, but also reflect a flattening of a hierarchy including
Morph (with 47 methods) and Object (with 30 methods). The illusion
exists at compile time that I need understand only this method or perhaps
only this class. Programming languages hide the rest.

28 James O. Coplien and Trygve Reenskaug

Much of program design, and programming language design, is in fact
about separation of concerns. The lines that separate concerns can be
thought of as reasoning boundaries whose goal is to delineate domains of
comprehension. It’s fine if such boundaries encapsulate the code relevant
to a given “endeavour of understanding.” But for non-trivial system behav-
iour, class inheritance layering and object layering of object-orientation cut
across the fundamental unit of business delivery: the use case. Further, the
additional class boundaries along the inheritance hierarchy add accidental
complexity from the perspective of reasoning about system operations.
And polymorphism de-contextualizes method selectors enough to make it
impossible to reason about the behaviour of any contiguous chunk of static
source code one writes in a given language and programming environment.

1.5.5.4 Summary of the shortcomings

All of these shortcomings can be summarized as variants on one theme:

Traditional object orientation organizes concepts at the extremes either
of a rather free-form network structure or of a single, punitive hier-
archy of forms.

The DCI paradigm strives to express a network model rather than a hier-
archy, but provides disciplines for intentionality of form rather than leav-
ing it to emergence.

1.5.5.5 Epicycles: early visions of relief

Researchers over the years have recognized this problem and have dis-
cussed it in various guises, and a number of attempts have appeared to ad-
dress it. Most of these solutions somehow relate to removing the limita-
tions of thinking in a single Cartesian hierarchy by introducing richer
forms of expression, all with the goal of higher code intentionality.

Howard Cannon’s Flavors system [13] was an attempt to move beyond
a strict classification that forced every object to be of one class at a time, to
one that permitted the class itself to be a composition of multiple class-like
things. Multiple dispatch [46] was an attempt to stop classifying methods
in terms of their method selector and the single type of a single object, but
instead to classify each method as potentially belonging partly to several
classes at once. The self language [52] tried to destroy the very notion of
classification as found in a traditional class, and to return to the object
foundations that drew objects from the end-user mental model. Depend-
ency injection [30] strove to blend the functionality of two objects into

The DCI Paradigm: Taking Object-Orientation into the Architecture World 29

one. Multi-paradigm design [21], [12] refused to view the world according
to a single classification scheme, making it possible to carve up different
parts of the system in different ways.

The goal of Aspect-Oriented Programming (AOP) is similar to that of
mix-ins, except its crosscutting units are more invasive at a finer level of
granularity. Aspects are reminiscent of multi-paradigm design in that they
allow a degree of separation of function and structure, but aspects’ func-
tional structure is much richer. It is more like having multiple knives carv-
ing up the same part of the system at the same time, whereas multi-
paradigm design ensured that the knives didn’t cross. Further, AOP again
is about thinking in classes rather than thinking in objects: it is a very static
way to attach a kit of adjustments to a program at compile time, even
though it uses reflection to achieve its end.

While most of AOP is about a decorative re-arranging of code, and
while that re-arrangement arguably makes it more difficult to reason about
aspectualized code, it in fact does provide slightly an enhanced computa-
tional model because of its emphasis of reflection. The original AOP vi-
sion is in fact rooted in reflection and a desire to apply the kinds of reflec-
tion available in Lisp to non-Lisp languages like Java. Still, more than 15
years after its conception, one of AOP’s inventors points out that it has
failed to live up to even one of the three propositions justifying its poten-
tial value [35].

Most of these architectural “advances” can be viewed metaphorically as
ornamentation of a base architecture rather than new paradigms in their
own right. Rather than fixing the fundamental flaws in the vision of the
paradigm, they tended to “patch” the paradigm with respect to singular
concerns of coupling, cohesion, or evolution.

These discourses wouldn’t be the only time in history that epicycle-like
structures would arise to rescue object orientation. Flavors in fact can be
viewed as a precursor to the DECORATOR pattern; multiple dispatch and
dependency injection, to the VISITOR pattern; multi-paradigm design, per-
haps as a weak form of the STRATEGY pattern. None of these approaches
underscored the original principles of object orientation; rather, they of-
fered localized repairs to the damage caused by applying the principles of
class-based programming.

There are two notable techniques that challenged the hierarchical struc-
tures of class-based systems: a return to pure objects, and reflection.

The Actor paradigm [27] is typical of a pure object worldview. Its se-
mantics are expressed in terms of interactions between objects that provide
services, and it is a very good approximation to the network model. The
self language challenged the notion of classes themselves. The self lan-

30 James O. Coplien and Trygve Reenskaug

guage, of course, can be viewed as an unabashed return to the fully net-
work-based metaphor of computation in a way that applied it so uniformly
as to minimize the problems of a class-based system. It’s hard (but not im-
possible) to find hierarchy in the self world.

In the real world many social interactions are in fact emergent while
others (like the course of a train along its track) are designed in advance.
Sometimes a design problem arises that is difficult to regularize in any ar-
chitectural form. The software design-level parallels to this adaptation are
reflection and introspection. This is the realm of meta-object protocols
(MOPs). MOPs have failed to gain traction over the years for a number of
reasons. They require a mindset change that cannot be rooted in static, syn-
tactic program analysis alone; few programming languages have risen to
the occasion to express it; and methods that lead to the right reflection
structures are elusive.

1.6 DCI as a new paradigm

DCI is a new paradigm of software architecture that emphasizes human
mental models and improved system comprehension over class-oriented
programming. Why is DCI a new paradigm? Many of its rules and tools
are reminiscent of the most fundamental practices of class orientation: en-
capsulation, cohesion, objects with identity and state that represent local
areas of domain concern, and so forth.

Part of what makes DCI a new paradigm is that it provides a new ex-
pressive way to view some of the same semantics that lie latent in the net-
work computational model. Real-world objects in fact don’t interact ran-
domly or with total blindness to their environment, but form communities
and chains of responsibility. DCI makes these structures visible in ways
that class-oriented design techniques do not.

Many of the resolutions to the single-hierarchy problem mentioned in
Section 1.5.5.5 did not fundamentally change the taxonomy of form, and
only AOP changed the computational model. DCI is less about decorating
or augmenting existing form than about carving a new form out of space
itself: the form of function.

DCI is also progressive in how it uses carefully constrained reflection to
provide the flexibility necessary to express the kinds of re-associations
between objects that arise in dynamic human mental models.

The DCI Paradigm: Taking Object-Orientation into the Architecture World 31

1.6.1 A DCI overview

We here give a brief overview of DCI from an architectural perspective.
Such an overview cannot be complete in the space allotted. For more de-
tailed information on DCI, see [9] or [42].

In the previous section, we discussed the shortcomings of the class ori-
ented computational models. The shortcomings were related to the free-
form network structure of objects and to a punitive hierarchy of forms.
DCI employs intentional network structures and restricted classes to over-
come these shortcomings.

Figure 3 serves as a background for the discussion. The shapes symbol-
ize a universe of run-time objects. The system can be studied either from
the inside of a particular object or from outside the objects in the space
between them.

1.6.1.1 Full OO

In Full OO, I see the outsides of the objects and the messages that flow
between them. Each object appears as a service. Its inner construction is
hidden by its encapsulation and does not concern us.

One object seen from inside its abstraction boundary on the left;

a universe of objects seen from the space between them on the right.

Figure 3: Comparison of Restricted-OO and DCI worldviews

32 James O. Coplien and Trygve Reenskaug

A DCI network has a bound form. It is intentional and is designed to
achieve a certain use case. A particular execution involves a sequence of
objects where each is responsible for fulfilling its part of the use case. In
the figure, a sample sequence is marked R1, R2, etc. Different executions
of the same use case may involve different objects, but the network topol-
ogy will remain the same. The nodes in the network are the Roles that ob-
jects play and the edges between them are the communication paths. The
Roles are wrapped in a DCI Context; there is one such Context for each
use case. In the figure, the Roles are marked R1, R2, etc. There is an
ephemeral bond between the Role and the object behind it.

Communication is now a first class citizen of computer programming.

1.6.1.2 Restricted-OO

I am here placed on the inside of an object. I can see everything that is de-
fined by the object’s class with its superclasses. The class comprises both
data and methods; state and behavior. The class won't appear in the code at
run time; the intellectual concept called the class is absent. What exists is
run-time objects. As I sit inside my class coding it is difficult to reason
about other classes. We already know this from the Kay model, or network
model, of OO computation. I can envision those objects but I can't know
much about them. In fact, object orientation explicitly prevents me from
knowing anything about any other object in my program because interac-
tions between objects are polymorphic. Seeing an invocation of method
bar on object foo doesn't help me find bar. There is an explicit abstraction
layer between objects that prevents me from reasoning about them in con-
cert. For this reason, we restrict our classes from sending messages to ob-
jects in the environment. Such messages are blocked with red crosses in
the figure. We call this style of programming Restricted-OO because in-
stances appear as self-contained services that are isolated from their envi-
ronment.

While a restricted class says everything about the inside of an object and
nothing about the objects surrounding it, a DCI Context says everything
about a network of communicating objects and nothing about their inner
construction.

1.6.1.3 DCI

DCI is an acronym standing for Data, Context, and Interaction.
With DCI, we move all methods that relate to object interaction out of

the classes, attach them to the Roles in the appropriate Contexts, and call
them Role Methods. What remains are the Data classes. They are Re-

The DCI Paradigm: Taking Object-Orientation into the Architecture World 33

stricted-OO because all interactions with the environment have been
moved out. The Roles are wrapped in a DCI Context and their Role Meth-
ods collectively specify the Interaction between objects that achieves a use
case.

In a Role Method, I see an invocation of method bar on Role foo. I
know the method since it is attached to the Role foo and there is no poly-
morphism in a DCI Context. I can, therefore, reason about the chain of
methods that realize a use case.

There are three fundamental advantages of DCI. First, the complexity of
the class is significantly reduced since it is Restricted-OO and no longer
contains any interaction code. Second, Role Methods now appear adjacent
to the methods in their collaborator Roles, thus keeping the code for the
overall interaction algorithm in one place where I can inspect it and reason
about it. Third, the Context is adaptive and self-organizing because it binds
the Roles to objects afresh for each use case invocation.

Bank accounts serve as a frequent DCI example, with classes for differ-
ent kinds of accounts. We want to support a system operation to transfer
money between those accounts. As designers we envision ourselves in the
run-time system and ask what objects we need and what responsibilities
they must support to be able to transfer the money. One possible mental
model has three Roles: Source Account, Destination Account, and Transfer
Amount. The Role Methods makes the Source Account decrement its bal-
ance by the Transfer Amount after which it asks the Destination Account
to increase its balance by the same amount.

Role names like Source Account, Destination Account and Transfer
Amount come directly from the end user mental model. You can easily
reconstruct them by asking anyone around you to give a succinct, general
description of how to transfer funds between their accounts, and listen
carefully what they say. They will refer to the objects involved in the
transaction. More precisely, they invoke the names of those objects ac-
cording to their roles in the money-transfer transaction. These are the new
design entities, the Roles, which form the locus of business logic.

The Context encapsulates the Roles, their logic, and the interactions be-
tween them. After all, Roles make sense only in a Context: these Roles
make sense only in the Context of Money Transfer. We might call the
class MoneyTransferContext.

Now we have a system of source code where the Data, defined by the
restricted classes, is separated from the business sequencing, defined by
the Context. We separate the shear layers of what-the-system-is and what-
the-system-does for independent maintenance. System behavior and lo-
cally focused class methods evolve at different rates. In traditional archi-

34 James O. Coplien and Trygve Reenskaug

tectures, they are linked in a single administrative unit that either can cause
the stable parts to inadvertently become dependent on rapidly changing
requirements, or make rapidly evolving code overly dependent on code
with high inertia.

We need to return once more to run time. DCI depends on a powerful
run-time environment that dynamically associates objects with the Roles
they play in a given use case. A program instantiates the appropriate Con-
text object at the moment it is asked to enact a use case. Each Context in
turn associates each Role with an object that plays that Role for the dura-
tion of the use case.

This association between Roles and objects makes each object to appear
to support all of the corresponding Role Methods as part of its interface.
While the DCI computational model doesn't stipulate how the run-time
system should do this, it conceptually can be thought of as extending each
object's method dispatch table with the methods for the Roles it plays. This
can be done by directly manipulating the dispatch table in single-hierarchy
languages (e.g., Python or Smalltalk), and can be done with traits in lan-
guages that have a stronger dual-hierarchy tradition (Scala, Ruby, and
C++). More advanced implementations affect a just-in-time binding be-
tween a Role Method and its object at the point of invocation.

1.6.2 Relating DCI to the original OO vision

1.6.2.1 How DCI achieves the vision of Restricted-OO

DCI draws heavily on the domain modelling that one finds in both Lean
Architecture [9] and in the original MVC framework [42]. MVC’s first
foundation is integrated domain services. The data classes in the DCI
paradigm correspond almost exactly with the Model classes of MVC.

Furthermore, DCI’s primary computational model is based on objects
rather than classes. One understands program behaviour in terms of the
logic in its roles; those roles are just behaviour-annotated names for the
objects involved in the use case. This is reminiscent of the network model
of computation germane to the original object vision.

1.6.2.2 How DCI overcomes the shortcomings of class-
oriented programming

By capturing the system view of state and behaviour, DCI and its ground-
ing in mental models go beyond the more nerd-centric vision of late-1980s

The DCI Paradigm: Taking Object-Orientation into the Architecture World 35

object orientation to the visions of mental augmentation and human-
centeredness.

Though both DCI and the original object vision take networks as their
model of computation, DCI reveals the network structure with more inten-
tionality. Think of a train system as an analogy. Trains and train stations
are objects. We can think of train behaviour in terms of its arrival at a sta-
tion: stopping, letting off passengers, closing the doors, and starting off
again. We can think about stations in terms of receiving and sending off
passengers. DCI steps up one level to express the regular patterns of sta-
tion visitations by trains.

1.6.3 DCI and the agile agenda

The Agile agenda discarded many trappings of modernism: the triumph of
technology over nature, the notion of form being subservient to function
(instead of function having its own form), the notion of automation (auto-
matically generated code) in deference to human craftsmanship, and many
more.

DCI is very much in line with these architectural shifts in agile. DCI is
much more about mental models than about technology — more about the
end user’s intent than the architect’s intent. Good software, like a good
house, suits those who inhabit it. On the technology side, the focus is on
thinking and the creation of good separation of form. While some techno-
logical underpinnings are of course necessary to support the DCI model of
computation, this issue has not risen to the level of language debate or of a
battle of technological prowess.

DCI leads the programmer and the user of the code (sometimes the same
person) into a dialog that helps capture mental models in the code. DCI
offers a home for the end user mental model directly is in the code in Con-
texts and domain classes. That obviates the need for an additional level of
documentation, removing a level of handoff and translation between the
end user and the programmer.

DCI audits favourably against the Agile Manifesto [8]. The agenda of
“individuals and interactions over processes and tools” is evident in giving
the human-computer interface full first-class status in use cases. This “in-
dividual” may be the end user whose use cases relate to the business, or the
programmer whose use cases are likely classic algorithms. Instead of de-
pending on intermediate documentation to express the requirements, we go
directly to the code where we express the mental model directly; that
means that we’re more likely to get working software than in the more
myopic class-centred design. We focus on customer collaboration — both

36 James O. Coplien and Trygve Reenskaug

between the team and the client at the level of use cases, and between the
product and the client at the level of the mental models. We lubricate
change by separating the shear layers of data and function.

1.7 DCI and architecture

DCI is in fact a radical break with the contemporary software architecture
canon. Most software architecture metaphors are based on the source code
or static (often class) structure. One darling of contemporary design is
class hierarchy — a form that is absent at run time. Most contemporary
expositions of run-time architecture are metaphors or computational mod-
els rather than models of form: Actors [27] and reflection come to mind.
The DCI paradigm explicitly captures run-time models in the architecture:
the form of function.

We can view DCI as an architectural school firmly ensconced in the
post-modern worldview. It breaks with the modernistic notion that the
technology (e.g., coupling and cohesion) is primary and takes a more utili-
tarian, human position. It is less about language (most modern program-
ming languages can express DCI designs) or implementation technology
(there are many stylistic variants of DCI) than about the computational
model shared across the mind of the end user and the mind of the machine.

Today’s class-oriented architect can’t easily envision the form of the
running artefact because the associations between objects at run time are
somehow too dynamic. DCI constrains the run-time connections to a form
prescribed by the Context, giving the architect the power to conceptualize
and shape the run-time system (Figure 4).

Figure 4: Designing a DCI application

The DCI Paradigm: Taking Object-Orientation into the Architecture World 37

Most important, DCI provides a home for the form of function. A Con-
text encapsulates the interaction of a set of Roles. Each Role describes how
its corresponding object interacts with other Roles to carry out a system
operation. The network of interactions between roles (the I in DCI) is the
form of that function.

1.7.1 DCI and the post-modern view

DCI is an approach to system architecture that is characterized by several
post-modern notions:

• Value ideas over objects, including the expression of the forms both of
data and function;

• Favouring compositional strategies over individual parts
• A broad-based human-centric agenda
• Focus on change

DCI has been embedded in a design approach called Lean Architecture
[9] that has other aspects of the post-modern school, most notably the im-
portance of process

1.7.1.1 Ideas over objects

Architects of the built world have long been fascinated with form and
function. The phrase “form follows function” is a vernacular English lan-
guage idiom that stood as a truism for ages. Contemporary architects are
wont to critique this posture and offer alternatives such as: “Form follows
failure” [39], which evokes the need for change and dynamics in converg-
ing on a suitable architecture (section 1.7.1.4).

Returning to object orientation’s roots in a worldview of emergent be-
haviour, we can view the form (think architecture) of a program as the re-
sult of accumulated learning over generations of program evolution. The
accumulated knowledge is broadly called domain knowledge. Program
form, then, has much of its roots in human conceptualizations of work. In
the vein of post-modernism, DCI is about ideas over objects — more about
the human side of systems than the system materials. These ideas take the
shape of algorithms, use cases, or the patterns of arrangement of material
beyond individual building blocks. DCI’s Role interactions help us reason
about these ideas.

38 James O. Coplien and Trygve Reenskaug

1.7.1.2 Compositional strategies over individual parts

The modern school emphasized the primacy of structure. In the built world
we find buildings like the Pompidou Centre in Paris that let the structure
“all hang out.” Class-based programming forces functional designers to
become structural designers by thrusting them within a class framework. It
is difficult to work at the level of pure form (e.g. abstract base classes) be-
cause there is no architectural home for functional concerns at the system
level: only at the level of the data.

DCI is instead about compositional strategies: how to capture function
and form and to reintegrate them under a computational model at run time.
That model also integrates objects into a contextualization of their collec-
tive behaviour. Programmers can now reason about system behaviour be-
cause all code for any given use case is collocated in a single class. Execu-
tion hand-offs across objects (represented by roles) are statically bound
rather than polymorphic.

1.7.1.3 A human-centric agenda

Team Autonomy: DCI data classes correspond to the domain organiza-
tional structure, and Contexts correspond to system-level deliverables. Re-
calling Conway’s Law [16], this structuring supports team autonomy.
Class-oriented architectures split use case code across the classes that form
the major administrative units of object-oriented programming. In DCI, the
code for a given use case is in the roles encapsulated by the single Context
class for that use case.

End-user focus: DCI moves programming closer to the end users by
embracing their mental models. It moves programming beyond the realm
of a select few (called programmers) into the realm of the many (called
end users). It places programming in an ecosystem of system behaviour
rather than a separate area of its own. This recalls post-modernism’s shift
from art for the elite to art for the masses.

1.7.1.4 Focus on change

Change is about the kind of human-centred context and relationships, lar-
ger than objects, of the DCI paradigm. Consider this post-modern insight
[50]:

Complex systems are shaped by all the people who use them, and in this new era of col-
laborative innovation, designers are having to evolve from being the individual authors of
objects, or buildings, to being the facilitators of change among large groups of people.

Sensitivity to context, to relationships, and to consequences are key aspects of the transi-
tion from mindless development to design mindfulness.

The DCI Paradigm: Taking Object-Orientation into the Architecture World 39

DCI realises the pattern ideals of piecemeal growth and local adaptation to
the extent that developers can add new use cases as stand-alone code mod-
ules independent of the domain structure.

DCI is not only about “design mindfulness” but more so about systems
thinking. Being able to reason about use cases makes it possible to reason
about system state and behaviour instead of just object state and behaviour.
We can now reason about evolution at the system operation level in the
context of supporting knowledge about market and end user needs. This is
architectural thinking; class-based programming is limited to organizing
kinds of software building materials in class hierarchies.

The evolution of the form takes place at the level of social awareness or
progress at the level of the ideas. This idea focus (discussed above in sec-
tion 1.3.2) is the first-order focus of change: Necessity is the mother of
invention. Structure emerges from function during design. The functions of
human endeavour arise from the supporting forms in the environment. DCI
supports this function-centred focus in design as well as a structure-
focused awareness in program use.

1.7.2 Patterns and DCI

Though patterns were broadly adopted for their power in describing geo-
metric form (classes and objects) they in fact have strong roots in temporal
geometry. Alexander prefaces his discussion of emergent structure with
geometric patterns, but the geometric patterns are prefaced with a discus-
sion of patterns of events. Indeed, Alexander sees deeply into a time-space
relationship that makes it difficult to separate the two [5, pp. 65-66]:

It is the people around us, and the most common ways we have of meeting them, of being
with them, it is, in short, the ways of being which exist in our world, that makes it pos-
sible for us to be alive.

We know, then, that what matters in a building or a town is not its outward shape, its
physical geometry alone, but the events that happen there.

…

A building or town is given its character, essentially, by those events which keep on hap-
pening there most often.

This aspect of patterns is missing from almost all software practice. DCI is
one of the first software architecture approaches to cite and build on this
aspect of Alexander’s work.

DCI also echoes the Alexandrian agenda in its end-user focus. Alexan-
der put house design in the hands of those who inhabit them. A house must

40 James O. Coplien and Trygve Reenskaug

relate to their mental model, to which end the architect must step aside
[3, p. 38]:

On the other hand, people need a chance to identify with the part of the environment in
which they live and work; they want some sense of ownership, some sense of territory.
The most vital question about the various places in any community is always this: Do the
people who use them own them psychologically? Do they feel that they can do with them
as they wish; do they feel that the place is theirs; are they free to make the place their
own?

The architect should focus on fine craftsmanship and beauty that har-
monizes the human perspective with context of use in a fundamental way
that transcends culture. DCI is such an architectural framework, and it de-
fers the cultural (domain) questions to the mental models of the occupiers
of the code: the end users and the programmers. Classic software architects
are likely to find this agile perspective disempowering.

It is possible to view DCI as a unification of two orthogonal architec-
tures: the data architecture ensconced in classes (Restricted-OO), and the
behaviour architecture ensconced in roles (the full OO part). This view is
particularly suitable to those who take a software construction perspective
on architecture instead of thinking ahead to the run-time delivered system.
A more subtle and deeper view of DCI notes that it in fact combines these
two forms into one at run time, albeit dynamically in a way that is impos-
sible to wholly capture in closed form. Yet the main rhythms and shapes of
both the dynamics and statics can be expressed respectively in the Roles
and classes of DCI source code.

This view is very close to Japanese models of the relationship of space
to time and the way that space provides potential for some happening in
time (e.g., 間 or ”ma”, sometimes translated ”space-time”). Such Japanese
roots are at the core of Alexander’s worldview. Alexander himself reveals
this perspective in his writing [5, p. x]:

These patterns of events are always interlocked with certain geometric patterns in the
space.

and [5, p. 70]:
The activity and its physical space are one. There is no separating them.

1.7.3 DCI and the network computation view

Perhaps one of the most telling distinctions of DCI is the place it relegates
to the human in the design process. If we think of the network model of
computation in the extreme, design and intelligence are local: system be-
haviour is emergent.

The DCI Paradigm: Taking Object-Orientation into the Architecture World 41

Designers often put this network view on a par with patterns. Alexan-
der’s works feed this speculation with references emergence as well as to
techniques such as automatic writing. However, a closer inspection of
Alexander makes the human component of his design world obvious. He
speaks more often about the power of community in sustaining a pattern
language than he does about the role of the architect.

In some sense, the network computation view was based on well-
intentioned individuals, with the metaphor relating to localized design
ownership and collective execution. But this model lacked Alexander’s
notion of patterns — both in time and in space. Patterns, unlike Alexan-
der’s more fundamental Theory of Centres [2] are a human and social phe-
nomenon.

DCI provides a vision of the role of human intellect, will, and design
above the network model of computation. Humans design the contexts
(social interpretations of collected behaviours) and the interaction of their
roles to reflect the recurring “patterns of events” between objects.

We can revisit reflection in this context. The network model of compu-
tation is rooted in emergent behaviour. True emergence requires flexibility
in software architecture that outstrips most architectural techniques, be-
cause it becomes difficult to tease out the underlying patterns. You might
drive to work via a different route every day based on individual reflection
that changes the path of interactions between your car and the intersections
it passes.

DCI supports a weak form of reflection whereby Contexts can reason
about the binding of role behaviour to objects at run time. This reflection
supports a form of emergence in which modules come and go dynamically
according to system use. Every use case enactment creates a dynamic
module (a Context object) as a configuration of interacting objects.

1.7.4 Firmitas, utilitas, and venustas

DCI contributes to stability in its data architecture in the same way as Re-
stricted-OO. Most such approaches will still use classes for the data archi-
tecture. But these classes are now freed from the rapid changes in behav-
iour driven by new business requirements. The architecture becomes more
stable, and firmitas is served.

An important part of utilitas isn’t in the software itself but in the rela-
tionship between the software and the end user. DCI gives the end-user
mental model of behavior a home in the code. That lessens the risk of a
translation error as can occur when splitting a use case across the widely

42 James O. Coplien and Trygve Reenskaug

separated domain classes implicated in a system operation. The architec-
tural focus turns from rudimentary technical merits to first-class utilitas.

In the end, DCI is about an integration of human experience with com-
puter support. Rather than separate man and machine through layers of
translation and design, DCI strives for the vision of integrating the ma-
chine seamlessly into end user expectations. When used to manage the
suitable selection of the computer as a tool of human mental augmentation,
DCI can reduce work effort, rework, and the frustrating surprises that
make computer life hell. DCI makes the program understandable so the
coder can feel at home. It’s about making the code habitable, in the direc-
tion of venustas.

1.8 Conclusion

DCI advances software into the human components of the architectural
metaphor more deeply than class-oriented programming and other preced-
ing paradigms. Further, DCI explicitly supports the agile agenda at the
same level of the architectural values that serve a broader human agenda,
with support for:

• end users and programmers as human beings with rich mental models;
• readable code to more easily achieve working software
• creating a home for the customer engagements of domain analysis and

use cases;
• clean evolution along the dominant domains of change in software.

DCI is typical of the broader promises of a post-modern approach to archi-
tecture and problem-solving. Elements of DCI reflect a broader change in
the design climate in software and the broader technical world, and the
broader integration of computing systems that go far beyond the business
applications of yesteryear to today’s social networking infrastructure.
Networks of interacting objects reflect the increasing consciousness about
networks of interacting human beings through computer systems today and
foresee the needs of architectural forms that can express these complex
forms. Articulations of such understanding, such as DCI, will enable the
leaps of functionality that this new world order will demand of their com-
puting systems.

The interesting aspect of this new world order is that, unlike many soft-
ware architecture approaches in this book, it is much less about technology
than about human mental models of their world. As the great architecture
efforts of classic civilizations have always strived to support the social

The DCI Paradigm: Taking Object-Orientation into the Architecture World 43

functioning of the cultures in which they arise, so DCI and its related post-
modern techniques can lay groundwork with the potential to raise the qual-
ity of life in all endeavors connected with computing. In a world where
over 20% of people are connected to the Internet, with rapid growth, it
goes without saying that a large fraction of human endeavor is at stake.

1.9 References

1. —. IEEE Standard Glossary of Software Engineering Terminology, IEEE
Computer Society, 1990.

2. Alexander, Christopher. The nature of order. Volume 1: The luminous ground.
Oxford University Press, 2004.

3. Alexander, Christopher. The Oregon experiment. Oxford University Press:
1978.

4. Alexander, Christopher. The origins of pattern theory: the future of the theory,
and the generation of a living world. IEEE Software, September / Octo-
ber 1999.

5. Alexander, Christopher. The Timeless Way of Building. Oxford University
Press, 1979.

6. Archer, L. B. Systematic method for designers. In Nigel Cross, ed., Develop-
ments in design methodology, John Wiley and Sons, 1984.

7. Archer, L. Bruce. Whatever became of design methodology? In Nigel Cross,
ed., Developments in design methodology, John Wiley and Sons, 1984.

8. Beck, Kent, et al. The agile manifesto. http://www.agilemanifesto.org, ac-
cessed 2 June 2012.

9. Bjørnvig, Gertrud, and James Coplien. Lean architecture for agile software
production. Wiley, 2010.

10. Booch, Grady. Software engineering with Ada, 1987.
11. Brandt, Stewart. How buildings learn: what happens to them after they’re built.

W&N, 1997.
12. Budd, Tim. Multi-paradigm design in Leda. Addison-Wesley, 1994.
13. Cannon, Howard. Flavors: a non-hierarchical approach to object-oriented pro-

gramming.
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-
20040122.pdf, 1979.

14. Card, Stuart K., Thomas P. Moran and Allen Newell. The Psychology of Hu-
man-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum, 1983,
p. 390.

15. Cockburn, Alistair. Why I still use use cases.
http://alistair.cockburn.us/Why+I+still+use+use+cases, accessed
2 June 2012.

16. Conway, Mel. How do committees invent? Datamation 14(4), April 1968.
17. Coplien, James. Coding patterns. C++ Report 8(9), October 1996, pages 18-25.

44 James O. Coplien and Trygve Reenskaug

18. Coplien, James. The culture of patterns. In Branislav Lazarevic, ed., Computer
Science and Information Systems Journal 1, 2, Belgrade, Serbia and
Montenegro, November 15, 2004, 1-26

19. Coplien, James. It’s not engineering, Jim. IEEE Careers web log,
http://www.computer.org/portal/web/buildyourcareer/Agile-Careers/-
/blogs/it-s-not-engineering-jim, accessed 5 December 2012.

20. Coplien, James. Agile: 10 years on. InfoQ seris on the 10th anniversary of the
Agile Manifesto, http://www.infoq.com/articles/agile-10-years-on, 19
February 2011.

21. Coplien, James. Multi-paradigm design in C++. http://793481125792299531-
a-gertrudandcope-com-s-
sites.googlegroups.com/a/gertrudandcope.com/info/Publications/Mpd/Th
esis.pdf.

22. Cross, Nigel. Developments in design methodology. John Wiley and Sons,
1984.

23. Evans, Eric. Domain-driven design. Addison-Wesley, 2003.
24. Fowler, Martin. Dependency Injection.

http://martinfowler.com/articles/injection.html, 2004.
25. Gabriel, Richard. Patterns of software: tales from the software community.

Oxford University Press, 1996, pp. 9-16.
26. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns of reusable object-oriented software. Addison-Wesley, 2005.
27. Hewitt, Carl. Actor model of computation. http://arxiv.org/abs/1008.1459,

2010.
28. Jacobsson, Ivar. Object-oriented software engineering: a use case driven ap-

proach. Addison-Wesley, 1992.
29. Jameson, Fredric. Postmodernism and consumer society. In The Anti-

Aesthetic. Hal Foster, ed., Port Townsend, Washington, 1983.
30. Jenkov Jakob, Dependency injection. http://tutorials.jenkov.com/dependency-

injection/index.html, n.d.
31. Kay, Alan. The early history of Smalltalk.

http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html, 2007.
32. Kay, Alan. A personal computer for children of all ages. http://history-

computer.com/Library/Kay72.pdf, August 1972, accessed 15 June 2012.
33. Kiczales, Gregor et al. An overview of AspectJ. Proceedings of ECOOP 2001.
34. Laurel, Brenda. Computers as theatre. Addison-Wesley, 1993.
35. Lopes, Cristina. Speech at AOSD 2012. 29 March 2012.
36. Martin, Robert C. Clean Code. Prentice-Hall, 2008.
37. Naur, Peter and B. Randell, eds. Proceedings of the NATO conference on

software engineering. NATO Science Committee, October 1968.
38. Neighbors, J. M. Software construction using components. Tech report 160,

Department of information and computer science, University of Califor-
nia—Irvine, 1980.

39. Petroski, Henry. Form follows failure. Technology Magazine 8(2), Fall 1992.
40. Pollio, V. Vitruvius: The Ten Books of Architecture. Trans. Morris Hickey

Morgan. New York: Dover, 1960.

The DCI Paradigm: Taking Object-Orientation into the Architecture World 45

41. Raskin, Jef. The humane interface. Addison-Wesley, 2000.
42. Reenskaug, Trygve. The common sense of object-oriented programming. April

2009, http:// http://folk.uio.no/trygver/2009/commonsense.pdf, accessed
8 June 2012.

43. Reenskaug, Trygve. Model-View-Controller: its past and its present.
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf,
September 2003, accessed 9 June 2012.

44. Reenskaug, Trygve. Thing-model-view-controller.
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf, 1978.

45. Reenskaug, Trygve. Working with objects: the OORAM software engineering
method. Prentice-Hall, 1996.

46. Rybczinski, Witold. Home: A short history of an idea. New York: Penguin
1987.

47. Snowden, D.J. Boone, M. A Leader's Framework for Decision Making. Har-
vard Business Review, November 2007, pp. 69-76.

48. Steele, Guy L. Common List: The language. Bedford, MA: Digital Press,
1990, chapter 28.

49. Thackara, John. Design after modernism. Thames and Hudson, 1988.
50. Thackara, John. In the bubble: designing in a complex world, n.d., p. 7.
51. Tidwell, Jenifer. Designing Interfaces. Sebastopol, California: O’Reilly Media,

Second Edition, 2012.
52. Ungar, David, and Randy Smith. Self: the power of simplicity.

http://labs.oracle.com/self/papers/self-power.html, 1987.
53. Weinberg, Gerald. Personal interview with Jerry Weinberg, 31 May, 1999..
54. Wirfs-Brock, Rebecca. Personal E-mail of 14 October 2009.

