

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Objects of the People, By the People, and For the People

James O. Coplien

Gertrud & Cope
cope@gertrudandcope.com

Abstract
Computers were invented largely as mental aids. In inventing
object-orientation, Alan Kay renewed that vision on a metaphori-
cal level that no longer subordinated computers to human minds.
Trygve Reenskaug tried to link the worlds of the human and the
computer together with Model-View-Controller, but at the time he
got only half the job done. Today we're stuck in this Kantian
object world where individual objects act alone and programmers
live inside of classes looking out: there is rarely any sense of
collective behaviour in object-oriented systems, and there is rarely
any degree of behavioural (self-)organization.

I have been working with Trygve on a paradigm called DCI
(Data, Context and Interaction) that places the human experiences
of design and use of programs equally at centre stage. It balances
the object interaction view with the traditional data conceptualiza-
tion of class-oriented programming. DCI offers a vision of com-
puters and people being mutually alive in Christopher Alexander's
sense of great design. It serves Kay’s original vision of object-
orientation powering computers as mental adjuncts, as well as his
vision of objects as a recursion on the concept of a computer. In
this world with a rapidly growing number of increasingly con-
nected human minds, DCI opens up a playful dialogue contrasting
metaphors of collective human reasoning and Kay's vision of
object computation.

Categories and Subject Descriptors C.0 [System Application
Architecture]

General Terms Algorithms, Design, Human Factors, Languages,
Theory, Verification.

Keywords DCI; aspect-oriented programming; reflection; object-
oriented programming; use case; domain modelling.

1. The Vision
Software has no value as a product. It generates value only when
running on a host machine to provide a service. Many design
approaches and most first- and second-generation programming
languages focused on these services, on the behaviours, captured
as procedures or functions. Today’s programming languages,
most of which relate to object orientation, tend to focus on data as

the primary organizing structure. Classes featured heavily as the
main building blocks of these programs.

Object orientation would evolve to the point where classes
were thought of as collections of related behaviours aggregated
around the data that related them, though the data became increas-
ingly encapsulated and hidden. Though this refocusing reduced
the preoccupation with data, its behavioural focus was more re-
lated to the programmer organization of code than to the business
function or the end user benefits from the code.

2. Past Glimmers
Object orientation started with Simula 67, which was quickly
followed by Smalltalk—a language dedicated to “computer-
human symbiosis.” [1] Smalltalk closely held to the ideals of
modelling real-world entities and of linking to our dynamic men-
tal processes, using objects as its basic building block. Syntacti-
cally, most of what the programmer focused on, while entering
code, was the class. It in fact amplified a style of programming
called class-based programming, introduced by Simula, which
would be followed by C++ and Java.

Many researchers and innovators would strive to break the ra-
ther strict Cartesian classification scheme of classes over the
ensuing 40 years. Howard Cannon’s Flavors [2] was an attempt to
move beyond a strict classification that forced every object to be
of one class at a time, to one that permitted the class itself to be a
composition of multiple class-like things. However, it was still
class-oriented and failed to capture behavioural wholes. Multiple
dispatch [3] was an attempt to stop classifying methods in terms
of their method selector and the single type of a single object, but
instead to classify each method as potentially belonging partly to
several classes at once. It focused on only one method at a time—
again, instead of overall behaviour. The self language [4] tried to
destroy the very notion of classification as found in a traditional
class, and to return to the object foundations that drew objects
from the end-user mental model. Dependency injection [5] strove
to blend the functionality of two objects into one. Multi-paradigm
design [6], [7] refused to view the world according to a single
classification scheme, making it possible to carve up different
parts of the system in different ways.

Gregor Kiczales [8] considered layered or hierarchical tree
structures are too simplistic for the complexity of the software
world. He said that a clean separation of function and structure
didn’t recognize the essential, complex cross-cutting nature of
their relationship. We should instead be using reflection to inject
this functionality into the objects at finer levels of granularity. He
called this the aspect technique: a way to do gene splicing at fine
levels of granularity.

The goal of Aspect-Oriented Programming (AOP) is similar to
that of mixins, except its crosscutting units are more invasive at a
finer level of granularity. They are like multi-paradigm design in
that they allow a degree of separation of function and structure,
but aspects’ functional structure is much richer. It is more like
having multiple knives carving up the same part of the system at
the same time, whereas multi-paradigm design ensured that the
knives didn’t cross. However, AOP again is about thinking in
classes rather than thinking in objects: it is a very static way to
attach a kit of adjustments to a program at compile time, even
though it uses reflection to achieve its end. Aspects are remark-
ably static: the injected logic (in mixins, called advice) is bound to
join points at compile time, according to the rules of the pointcut.
Last, Aspects suffer from a one-sided focus on the imperative side
of design—the model of locally aggregated behaviour.

3. The Realization
All these historic efforts strove to break free from parts and their
classification, to wholes and how to express them. Most of the
problem lies with behaviour. The broader questions of organiza-
tion of data structure have long been well in hand through ap-
proaches such as domain analysis [9], [10]. The advent of object
orientation tended to accord second-class status to behaviour.

A key concern in programming, and a longstanding foundation
of object orientation, is the parallelism between mental constructs
and programming constructs. Object-orientation owes a rich
legacy to frame-based cognitive modelling and, in a more direct
way, to Douglas Englebart’s vision that extended the Whorfian
hypothesis beyond language to the broader tools of computing.
Computers were to augment human intellect.

This perspective had taken a step forward in 1978 when
Trygve Reenskaug invented Model-View-Controller (MVC): a
framework that linked the end-user cognitive model with the
objects in computer memory [11]. However, much like the “im-
provements” to object orientation that would follow, it was overly
focused on the static part of object orientation.

Trygve’s vision started with the barely smart data of a sys-
tem—the places where information was stored through simple
APIs that maintained it in a consistent way. MVC was largely
about viewing these data, independent of how the computer pro-
cessed them. The key missing element was the interactions be-
tween the objects at run time, because that’s where the value of
software-as-service lies.

Trygve’s early work [12] established role modelling as a good
formalism for interactions between objects. Users and program-
mers used role names in natural language descriptions of system
behaviour. A role is the name of an object according to its use.
Roles were a subtle and yet important and radical departure from
classes, because they provided an important stepping stone to
what happens between the objects: the interactions. The structure
of these interactions collaborate in some context of execution.
Together with the data, the context and interaction provided the
foundation of a new programming paradigm: Data, Context, and
Interaction, or DCI.

DCI is a radical departure from class-oriented programming,
which has gone under the heading “object-oriented programming”
for some 40 years. Class programmers look at the world from
inside of the class looking out (or, if we are lucky, from inside the
object looking out)—a perspective from which it is impossible to
understand system behaviour. DCI programmers have a longitudi-
nal view across objects from which system operations and use
cases can be understood and reasoned about.

The code exhibits the structure of these operations in the col-
laboration structure between roles. The roles are first-class pro-
gramming entities whose methods combine into system oper-
ations. Roles can be dynamically bound to objects at run time.
However, their mutual invocations are statically bound to each
other in the code, making it possible to reason about behaviour
even in the static structure.

This dynamic view of programming affords a better match to
human mental models—first, for end users, and for programmers
as well. It is much more firmly in the vein of the current Agile
fashions of “individuals and interactions” and the first-class stand-
ing of algorithms in the code that can lead to “working software”
that expresses the use cases that come from “customer collabor-
ation.” It separates the shear layers of slowly changing data struc-
ture from more rapidly changing business logic that increase our
chances of “responding to change.”

From the perspective of software architecture, DCI provides a
unifying framework to consider both the function of form and the
form of function. In this sense it touches on deep foundations of
design related to analogous dichotomies through the ages. DCI is
a paradigm that sheds light on the same kinds of “patterns of
events” that Alexander holds as fundamental to his school. [13]
We can conjecture that this view of design drives very deep into
the nature of things: consider temporal symmetry-breaking and
the place of time in contemporary cosmology. There lies much
more here than just some engineering conventions.

In summary, DCI is a programming paradigm that exemplifies
many longstanding aspirations for computing as a field.

Acknowledgments
A very special thanks to Trygve Reenskaug, originator of DCI.

References
[1] Kay, Alan. “The Early History of Smalltalk.”

http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html
(2007).

[2] Cannon, Howard. Flavors: A non-hierarchical approach to object-
oriented programming.
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-
20040122.pdf, (1979).

[3] Steele, Guy L. “chapter 28”, Common LISP: The Language. Bed-
ford, MA., USA: Digital Press (1990).

[4] Ungar, David, and Randy Smith. Self, the power of simplicity.
http://labs.oracle.com/self/papers/self-power.html (1987).

[5] Fowler, Martin. Dependency Injection.
http://martinfowler.com/articles/injection.html (2004).

[6] Budd, Tim. Multi-paradigm programming in Leda. Addison-Wesley
(1994).

[7] Coplien, James. Multi-paradigm design for C++. Addison-Wesley
(2000).

[8] Kiczales, Gregor. Et al. “An overview of AspectJ.” Proceedings of
ECOOP (2001).

[9] Neighbors, J. M. “Software Construction Using Components.” Tech
Report 160. Department of Information and Computer Sciences,
University of California. Irvine, CA. (1980).

[10] Evans, Eric. Domain-driven design. Addison-Wesley (2003).
[11] Reenskaug, Trygve. http://heim.ifi.uio.no/~trygver/1979/mvc-

1/1979-05-MVC.pdf (1978)
[12] Reenskaug, Trygve. Working with objects: The OORAM Software

Engineering Method. Prentice-Hall (1996).
[13] Alexander, Christopher. The Timeless Way of Building. Oxford

(1979)..

