
T h e R o o t s o f D C I

Trygve Reenskaug
Dept. of Informatics, University of Oslo

On 2010.07.05 13:46, Mircea wrote on the object-composition list:

I was wondering if you could elaborate on other works that make up the basis of DCI?
Were there other works or just real-world observation and work done in BabyIDE?

The short answer is that the basis of DCI is mainly based on real-world observation of end user
requirements. The main DCI concepts are outside the scope of mainstream computer science
and this science has, therefore, had almost no influence on the evolution of DCI.

The long answer is very long. But Mircea and others have asked for it, so here it is. The roots
of DCI go back to the sixties. It started with my work with shipbuilding and ship design through
the sixties that revealed the need for distributed computer systems. See section 1: User need for
distributed components on page 2.

It seemed very promising to realize the distributed components with object systems, and objects
have been at the front of my attention since 1970. There were quite a few stumbling blocks,
however, the history is in section 2: Object Orientation is a promising technology on page 4.

I retired in 1997, and decided to spend my new freedom to pursue an old hobby horse. GOJO
programs are not readable. I believed I knew how to program algorithms and declare informa-
tion models. My problems stemmed from the third aspect of programming; that of specifying
communication. See section 3: My Retirement Project: BabyUML and DCI on page 7.

The last section is about the current state: section 4: DCI Today on page 8. Read it first if you do
not want to read it all.

1 User need for distributed components

Throughout the sixties, I worked on a CAD/CAM system for ships. The system was called
Autokon. It was first used in production in 1963, and it was subsequently adopted by most of
the world's leading shipyards. The system architecture consisted of a central database holding
an evolving product model, this was surrounded by applications that supported the design
departments in their various tasks. The lofting department also used a special application to
extract product data from the database and punch paper tapes for running numerically con-
trolled machine tools; initially a flame cutter.

An important insight was caused by a blunder. Steel design used Autokon to produce the numer-
ical equivalent of the old 1:50 drawings. A bright lad in Lofting recognized that the product
model was now precisely represented in the database. Presto! Control tapes for the flame cutters
could be pulled straight out of the database. They cut more than 300 tons of steel before discov-
ering the difference between precision and accuracy. Yes, the data in the database had 40 bit pre-
cision. No, dimensions were still as approximate as they had been in the 1:50 drawings. 300
tons of scrap steel and some angry finger pointing was the result.
July 30, 2010 4:35 pm Page 2 DCI-Origin.fm

Figure 1: COMMUNICATION WILL BE THROUGH THE TRADITIONAL CHANNELS AND THROUGH
THE NEW COMPUTER SYSTEM

We were blamed, of course, since we had developed the computer system. And I believed we
deserved the blame. Previously, each department owned their own design data. Data transfer
between departments was strictly controlled; the sender checked and signed before posting, the
receiver checked carefully before basing any work on the received material. Our database broke
this pattern. There was no data owner and there was no checking. The problem could, and was,
of course fixed by changing the work process.

I thought the problem was deeper. The computer system should mirror the line organization and
each line department should remain owner of its own data and its own programs. Figure 1 illus-
trates the architecture1. The departments are symbolized by their manager. Traditional commu-
nication (speech, paper) is along squiggly lines. Each manager has his own computer (could be
virtual). The computer contains the manager's own data(base). The straight lines are communi-
cation lines connecting the personal computers called components in the communication net-
work. The idea is recursive. A company can have many departments, a department can have
many groups, etc.

I envisioned a matrix architecture where business processes are decomposed into component;
each component being owned by the responsible department manager as illustrated in figure 2.
(Taken from the same paper as the previous figure).

1. Figure copied from ADMINISTRATIVE CONTROL IN THE SHIPYARD, ICCAS conference, Tokyo,
1973. http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
July 30, 2010 4:35 pm Page 3 DCI-Origin.fm

http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf

Figure 2: TWO DECOMPOSED FUNCTIONS. EACH COMPONENT IS CONTROLLED BY THE
RESPONSIBLE DEPARTMENT.

Figure 3 1illustrates a first attempt at documenting a business communication process where
each component is one of the man-machine combinations shown in figure 1 and figure 2.

These three figures illustrate my mindset in the early seventies. I believed that authority and
responsibility ought to go together in a business organization. In my role as a toolmaker, I also
believed distributed organizations should be supported by distributed computer systems.
Indeed, the need for such systems was so evident that I was convinced they would be common-
place by the end of the seventies. I was wrong.

2 Object Orientation is a promising technology

Around 1970, I got funding for creating a distributed planning and control system based on
these ideas. Simula had been invented by Nygaard and Dahl at the Norwegian Computing Cen-
ter across the yard from my office. What if the components were implemented as objects in a
huge Simula program? Great idea, but we hit obstacles. One was that the execution of a Simula
program typically lasted seconds or minutes. We needed the execution to last for a year or more.
(Persistent objects were still waiting to be invented.) A second obstacle was the real show stop-
per. Each manager should own his own programs, and Simula insisted that the sender of a mes-
sage must know the class of the receiver! This broke with the whole idea of communicating
components where the communication pattern was standardized while the inside of each com-
ponent was private. (We even expected that some components would be manual). Exit Simula,
and we had a problem.

At that time, the market for new ships collapsed and our project funding disappeared overnight.
In retrospect I see that we had a great deal to learn and the possible outcome of the project is
not at all obvious. With no project, I got time on my hands and used it to document some of our
ideas. The two papers referenced above were written at this time.

1. Figure copied from “PROKON/PLAN-A MODELLING TOOL FOR PROJECT PLANNING AND
CONTROL”: IFIP Congress, Toronto, Canada, 1977; http://heim.ifi.uio.no/~trygver/1973/ic-
cas/1973-08-ICCAS.pdf
July 30, 2010 4:35 pm Page 4 DCI-Origin.fm

http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf
http://heim.ifi.uio.no/~trygver/1973/iccas/1973-08-ICCAS.pdf

Figure 3: This example of a resource loading algorithm illustrates the informal, movie-type of
documentation used to describe the organized flow of messages

resulting from a given user command. .

The most important result of the aborted project was that I became a visiting scientist in the
Smalltalk group at Xerox PARC in 1978/79. There was, of course, immediate resonance. My
ideas of communicating components fitted well with Smalltalk's communicating objects. My
focusing on end users and their ownership of their own programs fitted well with Alan Kay's
vision of the Dynabook and also with Douglas Engelbart's vision of the computer as an exten-
sion of the human brain (Computer augmentation).

In the Smalltalk group, we used to say that there were two approaches to object orientation. One
was the East Coast approach with C++ and such: “Object orientation is a smart programming
artifact where an object is an instance of a class and also a data structure (struct? record?) with
built-in methods for operating upon its data”. The other was the West Coast approach: “Object
orientation is much more than that. Object orientation is an entirely new paradigm for thinking
about systems. An object is an element for building corresponding models in the human head
and in the computer. The essence of object orientation is that objects interact to achieve a task.”
The main difference between these views is clearly the difference between machine-orientation
and people-orientation. Our forefathers long ago had slaves working for them. I had thousands
slaves working for me in the shape of objects in my computer and they were doing exactly what
I had told them to do. (Which couldn't always be said of then human slaves).

The Project Component (PC) selects the first resource to be
loaded. (Resources are here loaded sequentially. Necessary
backtracking is supposed to be done through manual interven-
tion.) When all resources have been loaded, message 148 to
the user indicates that the command is completed.

The Resource Requirements Component (RRC) asks the
Component of the departmental head (DHC) to give the cur-
rent capacity limits through message 150.

DHC returns the capacity it thinks fit to release for our project
through message 151.

RRC then asks all ACs for their resource requirements and
their earliest and latest start and finish.

The ACs return the requested information.

RRC performs loading according to its own, built-in rules and
reports the planned times for start and finish to the ACs. It also
reports back to PC that it has completed its loading.

The ACs note their new planned start- and finish times.
July 30, 2010 4:35 pm Page 5 DCI-Origin.fm

Alan Kay later wrote an article, “The Early History of Smalltalk”, where he defined object ori-
entation as follows. (The whole article is well worth reading if you are interested in the foun-
dations of programming1).

 “Smalltalk's design--and existence--is due to the insight that everything we can describe
can be represented by the recursive composition of a single kind of behavioral building
block that hides its combination of state and process inside itself and can be dealt with only
through the exchange of messages. Philosophically, Smalltalk's objects have much in
common with the monads of Leibniz and the notions of 20th century physics and biology.
Its way of making objects is quite Platonic in that some of them act as idealisations of
concepts--Ideas--from which manifestations can be created. That the Ideas are themselves
manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of
Manifestation-Idea--which is a-kind-of itself, so that the system is completely
self-describing-- would have been appreciated by Plato as an extremely practical joke
[Plato].

 In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead of
dividing “computer stuff” into things each less strong than the whole--like data structures,
procedures, and functions which are the usual paraphernalia of programming
languages--each Smalltalk object is a recursion on the entire possibilities of the computer.
Thus its semantics are a bit like having thousands and thousands of computer all hooked
together by a very fast network. Questions of concrete representation can thus be postponed
almost indefinitely because we are mainly concerned that the computers behave
appropriately, and are interested in particular strategies only if the results are off or come
back too slowly.

 Though it has noble ancestors indeed, Smalltalk's contribution is a new design
paradigm--which I called object-oriented--for attacking large problems of the professional
programmer, and making small ones possible for the novice user. Object-oriented design is
a successful attempt to qualitatively improve the efficiency of modeling the ever more
complex dynamic systems and user relationships made possible by the silicon explosion.”

I agree with Alan Kay's definition of object orientation, but there were two questionable
assumptions underlying the Smalltalk implementation. One assumption was that if an object
was coded “to do the right thing”, it would behave properly when interacting with other objects.
This is OK in simple cases, but it fails for systems where “the value of the system is greater than
the sum of its parts”. In such cases, what is “the right thing” depends on the system as a whole,
i.e., the context.

There was also an assumption that the class was the ideal unit for code reuse. But classes are
often designed together in ensembles and are useless outside their ensemble. An example is
what used to be called a framework; an ensemble of classes that complement each other and
that are designed to be subclassed together to create a specific application

In short: Classes are not independent, and a higher level construct is needed to specify the
whole.

The Model-View-Controller2 was my first departure from the Smalltalk assumptions and it fol-
lowed naturally from my object-oriented mental model. It seemed so obvious that I declined an
invitation to write an article about it in the special issue of the Byte magazine dedicated to the
launching of Smalltalk-80. Instead, I wrote an article called “User-Oriented Descriptions of
Smalltalk Systems”. The article focuses on the “owner” of the system and his mental model.

1. ACM SIGPLAN Notices; Volume 28, Issue 3 (March 1993) There are many copies on the web, such as
 http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

2. http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf
July 30, 2010 4:35 pm Page 6 DCI-Origin.fm

http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

Structures of interconnected objects, of course, and interacting objects. This article builds on
the above references and is clearly one of the roots of DCI.1

I returned to the Central Institute for Industrial Research in Oslo in 1979. Our first activities
were to build a local Ethernet, to port Smalltalk-76 to a Norwegian computer. and to get funding
for a project that aimed at helping Norwegian industry with the wonderful new technology from
Xerox.

Role modeling followed naturally; the first OOram tool was demonstrated at the first OOPSLA
in Portland, Oregon in 1986.

3 My Retirement Project: BabyUML and DCI

There is a widespread belief that testing was the only way open for debugging OO programs.
(Dijkstra: Testing can show the presence of bugs, not their absence.) I also like to quote the Gang Of
Four:2

An object-oriented program's runtime structure often bears little resemblance to its code
structure. The code structure is frozen at compile-time; it consists of classes in fixed
inheritance relationships. The runtime structure consists of rapidly changing networks of
communicating objects. …, it's clear that code won't reveal everything about how a system
will work.

This horrible state of affairs has been with us for thirty years and nobody seem to take it as a
challenge to do something about it. Every engineering specification/drawing I have ever seen
has two signatures: ‘done by’ and ‘checked by’. In shipbuilding, a representative of the insurers
actually checks all important drawings. (Veritas and others). In programming, our weak tech-
nology prevents effective checking. Very frightening.

I took up the challenge when I retired i 1997. My retirement goal was to find a way to make
code reveal everything about how a works. This clearly implied making object interaction
explicit in the code. This should both help making the code reflect the end user’s perception of
the domain, “no surprises”, and to enable code checking (e.g., peer review, a hobby horse of
mine3). I first believed that a solution was to make UML into a programming language, this
effort is covered in my BabyUML page: http://heim.ifi.uio.no/~trygver/themes/babyuml. This page
includes articles, reports, and talks.

Three publications from the BabyUML project are cited here for historical reasons; their tech-
nology has been superseded by DCI and the BabyIDE programming environment.

A search for usable methods:
Reenskaug, T.: Why Programmers Don't Use Methods And What We Can Do About It.; A column in ObjectEX-

PERT January 1997; http://heim.ifi.uio.no/~trygver/1997/Why/970329why.pdf

An experiment where I explored the use of object components:
2006; Reenskaug, T: The BabyUML discipline of programming (where a Program =data + Communication

1. User-Oriented Descriptions of Smalltalk Systems.Byte Magazine, August 1981
http://heim.ifi.uio.no/~trygver/1981/byte/userorienteddescriptions.pdf

2. Gamma, E; Helm, R; Johonson, R; Vlissides, J: Design Patterns; ISBN 0-201-63361-; Addison-Wes-
ley, Reading, MA. 1995; pp.22-23.

3.The Case for Readable Code; Expert Commentary; in Klein(ed): Computer Software Engineering Re-
search; pp. 3-8; Nova Science Publishers 2007; ISBN: 1-60021-774-5.
http://heim.ifi.uio.no/~trygver/2007/readability.pdf
July 30, 2010 4:35 pm Page 7 DCI-Origin.fm

http://heim.ifi.uio.no/~trygver/1981/byte/userorienteddescriptions.pdf
http://heim.ifi.uio.no/~trygver/themes/babyuml
http://heim.ifi.uio.no/~trygver/2007/readability.pdf
http://heim.ifi.uio.no/~trygver/1997/Why/970329why.pdf

+Algorithms); Expert' voice; Software and Systems Modeling; 5, 1 April 2006; DOI 10.1007/s10270-006-0005-0;

.http://heim.ifi.uio.no/~trygver/2006/SoSyM/trygveDiscipline.pdf

An experiment where I tried to redefine the notion of a class to better support runtime compo-
nents using metaprogramming (Changing the Smalltalk notion of a class):
Reenskaug, T.: Programming with Roles and Classes: the BabyUML Approach; Chapter in Klein: Computer Soft-

ware Engineering Research. 2; pp. 45-88. Nova Science Publishers, New York, 2007; ISBN-13:

978-1-60021-774-6.; http://folk.uio.no/trygver/2007/babyUML.pdf

The goal of the BabyUML project was to bridge the chasm between the code we write at com-
pile time and the networks of communicating objects that do the work at runtime. The BabyIDE
interactive development environment bridges this chasm. Its foundation was the new DCI par-
adigm, one of its keystones was a variant of the Traits stateless methods.

The two last references above were based on the BabyUML component; an object that encap-
sulated a structure of inner objects and that was characterized by its provided interface. The
BabyUML Components were used to organize the data objects in a static structure. A few
experiments showed that this was exceedingly cumbersome. Different structures were needed
for different system operations.

An important innovation was to replace the BabyUML static data structure with the dynamic
DCI Context; a temporary object structure that is created for the purpose of an execution and
that exists only during that execution. Further, the participating objects are referenced indirectly
through the roles they play in the execution. Finally, Traits were added to specify the interaction
explicitly, blocking the ambiguities caused by polymorphism.

4 DCI Today

On the 28 August 2008, I declared that the BabyUML project had reached its goal.

There was no trace of UML in the 2008 release, so the project was renamed BabyDCI. There
are two reasons for the ‘Baby’ part of the name. The 2008 release was an infant that I hoped
would grow into something viable and powerful. But also somewhat whimsically: The world’s
first electronic, digital, stored program computer was called ‘The Baby’ (University of
Manchester, England, 1948). As we all know, much followed after this feeble beginning. The
2008 version of DCI may be the world’s first programming paradigm where data communica-
tion is a first class citizen of programming, taking its rightful place together with data transfor-
mation and data storage. Something big might come out of it.

One of my goals for the BabyUML project is quoted in the “Common Sense” report1: “My hope
is that this first BabyIDE implementation shall inspire programmers, developers, and research-
ers to pick up the baton and run with it”. I am truly grateful for the many people who are making
this wish come true.

After 2008, DCI has been brought out in the world under the leadership of James Coplien. With-
out him, DCI would have remained an obscure curio. The following was my first reaction to the
Lean Architecture book he wrote with Gertrude Bjørnvig:

Where my “Common Sense” report is targeted at the coder, “Lean Software Architecture”
paints on a much broader canvas: Working with the end user, end user's mental model, user
requirements, system architecture, and right down to actual code. A MUST read.for all who
want to understand the true nature of system development.

1. http://heim.ifi.uio.no/~trygver/2009/commonsense.pdf
July 30, 2010 4:35 pm Page 8 DCI-Origin.fm

http://heim.ifi.uio.no/~trygver/2006/SoSyM/trygveDiscipline.pdf
http://folk.uio.no/trygver/2007/babyUML.pdf
http://heim.ifi.uio.no/~trygver/2009/commonsense.pdf

Thanks to Jim, there is today a significant body of gifted people who are studying DCI, adapting
it to different languages, applying it to different requirements, and even developing a new pro-
gramming language that supports DCI.

Jim has started a DCI mailing list called object-composition@googlegroups.com. The number of
active participants on this list is growing, and there has been many threads that have given new
insights.

Euclid is said to have replied to King Ptolemy's request for an easier way of learning mathemat-
ics that “there is no Royal Road to geometry”. Likewise, there is no Royal Road to DCI. An
object is an entity that has identity and that encapsulates state and behavior. The class is the
common abstraction of objects. Wikipedia defines abstraction as follows: “In computer sci-
ence, the mechanism and practice of abstraction reduces and factors out details so that one can
focus on a few concepts at a time”. The class abstraction factors out object identity and focuses
on the object’s inner construction (attributes and methods). In DCI, the Role is an opposite
abstraction that factors out the object’s inner construction and focuses on the object’s identity.
It is this change of focus that makes it possible to identify the senders and receivers of messages
and thus reason about how a network of communicating objects performs a task. And it is this
change of focus that makes DCI hard to understand for a class oriented person because object
identity is explicitly excluded from consideration. (Opinions about DCI based on class based
thinking are weakly founded.

Try to explain the notion of color to a completely color blind person. Try to explain the notion of Roles
to a class-centered person. The notions are out of scope in both cases.

The object-composition list is somewhat marred by contributors who loudly demand a royal
road to DCI. They are necessarily disappointed, but hopefully also spurred on to renewed
efforts. There is no substitute for actual experiments for enlarging one’s mental model.

That said, the discussions on the object-composition list have inspired much of my work since
its creation in 2008. I have rewritten my Smalltalk/Squeak examples several times, each rewrite
exploring a different implementation.

There is an important outstanding issue that is bound to hit us hard at some point in the future.
In DCI, there are overlapping namespaces with their attendant inconsistencies. A class defini-
tion is a namespace. Method names are unique within this namespace. Different classes can
reuse the same method name without conflict. (The class hierarchy doesn’t invalidate this argu-
ment, only makes it more complicated). A Context is another namespace. Role names are
unique within a Context. Different Contexts can reuse the same role name without conflict.

The problem is with the role methods. Role methods belong in the Context namespace. But role
methods are injected into Data objects or classes where their names may conflict with methods
in the class proper and with other role methods injected from other Contexts. The usual way to
handle such problems is with qualified method names such as
<Context name>/<Role name>/<method name>, but it is not at all clear if this is a good solution
for DCI.
July 30, 2010 4:35 pm Page 9 DCI-Origin.fm

An important part of OOram was role model synthesis; an operation that merges several models
into a composite. Figure 4 illustrates that OOram synthesis constrains several objects to be
played by the same object. A copy of figure 1.10 in Working with objects.1

Figure 4: OOram Synthesis specifies that objects play several roles in a coordinated manner.

In DCI, a corresponding Context merge would mean that roles from different Contexts will be
constrained to be played by the same object. Role model synthesis was an essential part of
OOram. It is not at all clear if a similar Context merge in DCI will be meaningful or useful. I’ve
made one inconclusive experiment, but I clearly need to refresh my memory with Egil Ander-
sen's PhD. thesis “Conceptual Modeling of Objects. A Role Modeling Approach”2 where he
uses state machines to describe the behavior of object systems.

I have long wanted to rewrite BabyIDE using DCI. But before that, there are a few articles that
should be written...

My home page for DCI is http://heim.ifi.uio.no/~trygver/themes/babyide where I from time to time
post results of my ongoing work.

DCI is evolving and this story is still unfolding, The natural narrator for this continued story
will be Jim Coplien. The future looks bright for the DCI paradigm.

1. Reenskaug, T. et.al.: Working with objects. The OOram Software Engineering Method. Manning/Pren-
tice Hall 1996. ISBN 0-13-452930-8; Out of print, but is still available from some bookshops including
Amazon as of July 2010. You can alternatively download the last draft before publication. It has not
had the benefit of the copy editor's corrections and improvements, but its substance correspond closely
to the printed book. .
http://heim.ifi.uio.no/~trygver/1995/95Article/951010-paper.pdf

2.http://heim.ifi.uio.no/~trygver/1997/EgilAndersen/ConceptualModelingOO.pdf

Objects
July 30, 2010 4:35 pm Page 10 DCI-Origin.fm

http://heim.ifi.uio.no/~trygver/themes/babyide
http://heim.ifi.uio.no/~trygver/1997/EgilAndersen/ConceptualModelingOO.pdf
http://heim.ifi.uio.no/~trygver/1995/95Article/951010-paper.pdf

	1 User need for distributed components
	2 Object Orientation is a promising technology
	3 My Retirement Project: BabyUML and DCI
	4 DCI Today

